题目链接:https://vjudge.net/problem/UVA-1476
题意:S(x) = a * x ^ 2 + b * x + c,给定n个a b c的值从而确定n个S(x)方程式,F(x) = max(Si(X)),求F(x)最小值。
思路:看到S(x)定义发现其是一个先减后增(凹函数)的函数(0 <= a <= 100),很明显可以用三分求最值,当a为0时为单调函数用三分也用适用。根据F(x)的定义不难发现F(x)也一定是一个单峰函数,可以用三分求最值。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstdlib>
#include<sstream>
#include<deque>
#include<stack>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double eps = 1e-9;
const int maxn = 10000 + 20;
const int maxt = 300 + 10;
const int mod = 10;
const int dx[] = {1, -1, 0, 0};
const int dy[] = {0, 0, -1, 1};
const int Dis[] = {-1, 1, -5, 5};
const double inf = 0x3f3f3f3f;
const int MOD = 1000;
const double PI = acos(-1.0);
int n, m, k;
struct node{
double a, b, c;
}num[maxn];
double solve(double x){//F(x)
double ans;
ans = num[0].a * x * x + num[0].b * x + num[0].c;
for(int i = 1; i < n; ++i){
ans = max(ans, num[i].a * x * x + num[i].b * x + num[i].c);
}
return ans;
}
int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &n);
for(int i = 0; i < n; ++i){
scanf("%lf%lf%lf", &num[i].a, &num[i].b, &num[i].c);
}
double ans = inf;
double l = 0.0, r = 1000.0;
double mid, mmid, tmp1, tmp2;
while(l + eps < r){//三分求凹函数最小值
mid = (l + r) / 2.0;
mmid = (mid + r) / 2.0;
tmp1 = solve(mid);
tmp2 = solve(mmid);
if(tmp1 > tmp2) l = mid;
else r = mmid;
}
printf("%.4f\n", solve(l));
}
return 0;
}