题意:这道题的题意实际上就是用K个有N个节点的生成树构成一个完全图。
思路:N个点的完全图共有N*(N - 1) / 2条边,N个点的生成树共有(N - 1)条边,共K个这样的生成树,故一共需要K * (N - 1)条边,要用这些边构成一个完全图,故需满足K * (N - 1) == N*(N - 1) / 2,解得N = 2 * K,其中不难发现每个节点只能做一次开始或结束的点。场上也想到这里了,但是没有想明白怎么确定每个生成树对应的边是哪(N - 1)条边。补题时发现原来找规律做就好了,队里一大神说根据样例就可以推出规律。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3 + 10;
int main(){
int k;
scanf("%d", &k);
int n = k << 1;
printf("%d\n", n);
for(int i = 1; i <= k; ++i){
for(int j = i + 1; j <= i + k; ++j){
printf("%d %d\n", i, j);
}
for(int j = 1; j <= n - 1 - k; ++j){
printf("%d %d\n", i + k, ((i + k + j) % n) == 0 ? n : (i + k + j) % n);
}
}
return 0;
}