自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 PCSE机理剖析(一)

作物的营养生长和生殖生长两个阶段的划分参数为有效积温 TSUM1 和TSUM2。物候期的生长依据日发育速率计算(Daily Development Rate),日发育速率受到春化、日照长度和日有效温度的影响。生长发育速率——营养生长和生殖生长阶段:t 时刻发育速率 = t时刻春化影响因子 * t时刻光周期影响因子 * 每日有效温度 * 完成阶段 i 需要的积温(DTSUM=DTSMTB(drv.TEMP)×VERNFAC×DVRED;

2024-08-29 15:38:59 977

原创 PCSE机理笔记

这种模型不够真实,因此,随着土壤数据的详细化,更现实的土壤水平衡模型被认为是必要的,以更准确地模拟土壤过程及其对作物生长的影响。在WOFOST 中生育期模拟的算法使用一个无量纲的尺度表示,取值范围为 0(出苗时)、1(开花时)和 2(成熟时)。土壤水分可利用系数(SWEAF)是土壤水分在田间持水量和萎蔫点之间的分数,取决于潜在蒸散量(对于封闭冠层,单位:cm/day,ET0)和作物组编号(DEPNR),范围从1(=干旱敏感)到5(=干旱耐受)该功能实现了叶片的生物量分配、叶片的生长和衰老过程。

2024-08-21 17:56:25 1184 1

原创 lapply、tapply、mapply的区别

总结:lapply用于对列表中的每个元素应用相同的函数,返回一个列表;tapply用于对向量按照因子进行分组,并对每个组应用相同的函数,返回一个结果矩阵或数组;mapply用于对多个向量中的对应元素应用相同的函数,返回一个结果向量。:tapply函数用于对向量按照指定的因子进行分组,并对每个组应用相同的函数。:mapply函数用于对多个向量(或列表)中的对应元素应用相同的函数。它返回一个结果向量,其中每个元素是对应元素经过函数处理后的结果。:lapply函数用于对列表(或向量)中的每个元素应用相同的函数。

2023-10-15 22:10:26 575 1

原创 随机森林重要性排序-R

library(openxlsx)wine = read.xlsx("E:/时间趋势/winequality-red-2.xlsx") #将数据集分为训练集和测试集,比例为7:3train_sub = sample(nrow(wine),7/10*nrow(wine))train_data = wine[train_sub,]test_data = wine[-train_sub,]library(pROC) #绘制ROC曲线library(randomForest)#数据预处理train

2022-04-14 20:10:04 4839 1

原创 js中(...)用法

1,深拷贝一个对象  如上图所示,obj和tmp是完全两个独立的对象,互不影响  2,数组复制  3,函数形参中的使用  这里的…args,是对test函数中多余的参数进行收集,并转换成数组的形式进入函数体中4,一种特殊情况,当数组里面套对象的时候,我们用[…]依然是无法深拷贝一份数据的,这个时候我们就要自己写递归函数了案例:   解决办法:自己写一个函数function copySelf(obj) { var newobj = obj.constructor === Array

2021-08-04 16:58:55 12037 4

原创 深入理解 JavaScript 中的 class

在 ES6 规范中,引入了 class 的概念。使得 JS 开发者终于告别了,直接使用原型对象模仿面向对象中的类和类继承时代。但是JS 中并没有一个真正的 class 原始类型, class 仅仅只是对原型对象运用语法糖。所以,只有理解如何使用原型对象实现类和类继承,才能真正地用好 class。ES6:class通过类来创建对象,使得开发者不必写重复的代码,以达到代码复用的目的。它基于的逻辑是,两个或多个对象的结构功能类似,可以抽象出一个模板,依照模板复制出多个相似的对象。就像自行车制造商一遍一遍地复

2021-08-04 10:55:44 444

原创 R计算SPEI指数

library(SPEI)# ===========读入数据# 降水数据prec = read.table('D:\\station\\prec.txt',header = T) # 温度数据temp = read.table('D:\\station\\temp.txt',header = T)# 每一个站点对应的纬度数据lat = read.table('D:\\station\\lat.txt',header = T)# 输出路径print(ncol(temp))print(

2021-04-18 21:26:20 5168 1

原创 R语言Mk检验+python滑动T检验

R语言Mk检验+python滑动T检验MK检验#####设置文件路径######setwd("D:\\station\\站点SPEI计算\\spei3\\")#####原始数据#####library(openxlsx)data<-read.xlsx("MKwinter.xlsx",colNames = FALSE)data<-as.matrix(data)#####对数据求倒序#####data_dx<-rev(data)data_dx<-matrix(data

2021-03-29 17:37:47 2647 7

APSIM Next Generation版本,稳定运行

APSIM Next Generation版本,稳定运行

2023-09-05

NSGA-II算法的python实现(包含详细注释案例)

NSGA-II算法的python实现(包含详细注释案例)

2023-08-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除