Leetcode1105.填充书架(理解动态规划思路)

博客详细解释了如何使用动态规划解决LeetCode上的填充书架问题,重点在于理解动态规划的状态转移和优化思路。作者指出,动态规划的关键是找到最优解并尝试将新书与已有的最优排列组合,以求得最小的书架总高度。通过迭代和双重循环,逐步更新状态并寻找最佳解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题:
附近的家居城促销,你买回了一直心仪的可调节书架,打算把自己的书都整理到新的书架上。你把要摆放的书 books 都整理好,叠成一摞:从上往下,第 i 本书的厚度为 books[i][0],高度为 books[i][1]。按顺序 将这些书摆放到总宽度为 shelf_width 的书架上。先选几本书放在书架上(它们的厚度之和小于等于书架的宽度 shelf_width),然后再建一层书架。重复这个过程,直到把所有的书都放在书架上。需要注意的是,在上述过程的每个步骤中,摆放书的顺序与你整理好的顺序相同。 例如,如果这里有 5 本书,那么可能的一种摆放情况是:第一和第二本书放在第一层书架上,第三本书放在第二层书架上,第四和第五本书放在最后一层书架上。每一层所摆放的书的最大高度就是这一层书架的层高,书架整体的高度为各层高之和。以这种方式布置书架,返回书架整体可能的最小高度。
在这里插入图片描述


看了好几篇题解,我发现很多人没有把动态规划的思路说明白。动态规划的想法代码上好实现但是难想出来怎样设计。这题的我的解题思路是这样的:

我能感觉到这题是用动态规划的解法------dp存储的肯定是某一个时刻的书架最优解,在这里是最小高度-----新来的书怎么放?放在最后肯定不是最优解,我希望它和以前的书更紧凑,所以我们把它和前面的书放在一排试试----如果不能挤了,前面的也不需要动,毕竟都是最优解了。
这基本就是真实的思路了。

所以我们整理以下思路:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值