- 博客(7)
- 收藏
- 关注
原创 参数估计
<br />1.矩估计()<br /> 根据辛钦大数定理,可知样本矩在一定程度上可以逼近总体矩,因此可以用样本矩来估计总体矩。<br />通常按照矩的阶数从1到k列出k个样本等于总体矩的方程,从而求出待估参数。<br /> 最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.<br /><br /><br />2.极大似然估计()<br /> 随机事件E中有n个可能结果A1,A2,A3……An,今做一次实验结果是Ai发生,则认为事件Ai在这n个可能结果中出现的概率最
2011-01-30 21:52:00
381
原创 协方差和相关系数
<br />协方差:表示两个不同参数之间的方差<br />E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]<br />COV(X,Y)=E(XY)-E(X)E(Y)<br />协方差的性质:<br /> (1)COV(X,Y)=COV(Y,X);<br /> (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数);<br /> (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X
2011-01-27 10:50:00
767
原创 中心极限定理(central limit theorem)
<br />是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,。研究由许多独立随机变量组成和的极限分布律。指出了大量随机变量近似服从正态分布的条件。 <br /> <br /> 中心极限定理(central limit theorem)<br /> 林德伯格-列维(Lindburg-Levy)定理,即独立同分布随机变量序列的中心极限定理。它表明,独立同分布、且数学期望和方差有限的随机变量序列的标准化和以标准正态分布为极限。<br
2011-01-27 09:58:00
4506
原创 切比雪夫不等式
<br /> 对于任一随机变量X ,若EX与DX均存在,则对任意ε>0,恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2<br /> 切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε}越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。<br /> 切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多是1/K^2。<br /> 与平均
2011-01-27 09:32:00
3413
转载 while(cin>>str)无法结束的问题
有人问我他写的while(cin>>str)...为何无论如何总是无法结束?其实在你输入完字符串后,键下回车后,再ctrl+Z(windows环境下是ctrl+z,而linux/unix下是ctrl+d)就OK了!至于原因如下(baidu): cin是终端输入,也被称之为标准输入(standard input),cin的主要功能就是从标准输入读入一个值。 当从键盘上输入一串字符并按回车后,这些字符
2009-05-22 20:34:00
536
转载 cin系列问题
学C++的时候,这几个输入函数弄的有点迷糊;这里做个小结,为了自己复习,也希望对后来者能有所帮助,如果有差错的地方还请各位多多指教(本文所有程序均通过VC 6.0运行)转载请保留作者信息;1、cin1、cin.get()2、cin.getline()3、getline()4、gets()5、getchar()1、cin>> 用法1:最基本,也是最常用的用法,输入一个数字
2009-05-22 20:34:00
348
转载 i++循环与i--循环的执行效率
转载时请注明出处和作者联系方式文章出处:http://www.limodev.cn/blog作者联系方式:李先静 昨天同事问了我一个问题,有两个循环语句:for(i = n; i > 0; i–){…}for(i = 0; i {…}为什么前者比后者快?我当时的解释是:i–操作本身会影响CPSR(当前程序状态寄存器),CPSR常见的标志有N(结果为负), Z(结果为0),C
2009-03-27 17:21:00
253
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人