probability
snakeshj
这个作者很懒,什么都没留下…
展开
-
切比雪夫不等式
<br /> 对于任一随机变量X ,若EX与DX均存在,则对任意ε>0,恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2<br /> 切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε}越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。<br /> 切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多是1/K^2。<br /> 与平均原创 2011-01-27 09:32:00 · 3317 阅读 · 0 评论 -
中心极限定理(central limit theorem)
<br />是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,。研究由许多独立随机变量组成和的极限分布律。指出了大量随机变量近似服从正态分布的条件。 <br /> <br /> 中心极限定理(central limit theorem)<br /> 林德伯格-列维(Lindburg-Levy)定理,即独立同分布随机变量序列的中心极限定理。它表明,独立同分布、且数学期望和方差有限的随机变量序列的标准化和以标准正态分布为极限。<br原创 2011-01-27 09:58:00 · 4416 阅读 · 0 评论 -
参数估计
<br />1.矩估计()<br /> 根据辛钦大数定理,可知样本矩在一定程度上可以逼近总体矩,因此可以用样本矩来估计总体矩。<br />通常按照矩的阶数从1到k列出k个样本等于总体矩的方程,从而求出待估参数。<br /> 最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.<br /><br /><br />2.极大似然估计()<br /> 随机事件E中有n个可能结果A1,A2,A3……An,今做一次实验结果是Ai发生,则认为事件Ai在这n个可能结果中出现的概率最原创 2011-01-30 21:52:00 · 352 阅读 · 0 评论