有一个方格矩阵,矩阵边界在无穷远处。我们做如下假设:a. 每走一步时,只能从当前方格移动一格,走到某个相邻的方格上;b. 走过的格子立即塌陷无法再走第二次;c. 只能向北、东、西三个方向走;请问:如果允许在方格矩阵上走n步,共有多少种不同的方案。2种走法只要有一步不一样,即被认为是不同的方案。 还是一道递归式水题,当在(x,y)点上时只有三种选择,细节上注意通过数组记录该点是否来过,最后要记得回复为0 #include<iostream> #include<string> #include<string.h> using namespace std; int a[50][25]; int f(int x,int y,int z) { int b=0; if(a[x][y]==1){return 0;}走过此地返回0 if(z==0){return 1;}//走完步数时返回1 if(a[x][y]==0) {a[x][y]=1;} b=f(x+1,y,z-1)+f(x,y+1,z-1)+f(x,y-1,z-1);//三种递归选择 a[x][y]=0;//恢复 return b; } int main() { int n,k; memset(a,0,sizeof(a)); cin>>n; k=f(1,25,n); cout<<k; }