机器学习
Snippers
个人公众号:才浅的每日python。欢迎来交流
展开
-
朴素贝叶斯——最适合简单的文本分析算法
一、朴素贝叶斯核心思想首先我将举个例子以便理解。假设我收到一封邮件,内容描述如下:您提交的3215号工单:来自李先生的留言。请点击链接查看工单处理进度:https://tingyun.kf5.com/hc/request……已知在垃圾邮件中经常出现“链接”,“点击”这种单词,我收到的该邮件中包含了这些单词,这个邮件很可能是垃圾邮件。垃圾邮件分类属于监督学习范畴,监督学习指给定一个数据和标签...原创 2019-07-29 17:38:41 · 2055 阅读 · 0 评论 -
朴素贝叶斯实例二——情感分析
大体思路:从测试数据中将用户正面情感和负面情感的评论抽取出来,以识别评论是正面负面,和真实标签进行对比计算出准确率。from matplotlib import pyplot as pltimport jieba # 分词import re # 正则from sklearn.feature_extraction.text import TfidfVectorizerimport nu...原创 2019-07-30 13:52:18 · 3084 阅读 · 0 评论 -
SVM支持向量机+实例展示
一、SVM简介SVM定义:支持向量机(英语:support vector machine,常简称为SVM,又名支持向量网络)是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独...原创 2019-08-05 15:54:29 · 35968 阅读 · 1 评论