前言
儿童教育问题从来都是国家和全社会关注的焦点之一。人类科技文明发展成果如何更好地应用于儿童教育领域一直都是相当重要的课题。近年来,数字化技术蓬勃发展,党的二十大更是首次将“教育数字化”写进报告,提出“推进教育数字化,建设全民终身学习的学习型社会、学习型大国”。教育部贯彻落实教育数字化战略行动,着力开辟发展新领域新赛道,不断塑造发展新动能新优势。
在儿童教育领域利用人工智能、大数据、云计算等技术,对数字化的各类客观形态(包括环境、材料、设备、数据等)进行分析、处理、推理、创造、反馈等,形成一种具备改善儿童教育环境、优化儿童学习体验、提高儿童学习效率、促进儿童全面发展的数字化教育理念,是儿童教育领域发展的时代呼唤。
由于教育环境和教育材料在儿童教育中的重要作用,则,对教育环境和教育材料的数字化改造,会成为儿童教育领域数字化的主要课题之一。在这个改造过程中,势必会利用或创造多种类型的智能设备,以便可以与数字化过程相关联,从而形成儿童教育的数字环境与数字材料体系,并通过数字游戏等手段与建立的数字环境和数字材料交互,为儿童教育营造出一个虚实融合的教育载体,利益儿童。
因此,研究这个构建过程,还要考虑这些智能样态对个体差异、学习方式、身心健康、兴趣爱好、认知能力、情感态度、多元发展、伦理道德、教师角色等各方面的影响,继而形成相对全貌的思维系统来应对数字化对教育领域改造的不确定性,未来这种应用能力可以通过将深度学习与人类的智能交互机制约束在某种数字框架下进行应用实现,这种应用实现的能力,作者政安晨姑且将其称为“数字智能”。
一、本文探究的目标
教育理论与方法从古至今一直在发展演变,这也是我们不断提升自己、认识自然的过程。在这个演变的过程中,科学技术的发展一直起着相当重要的作用。从原始的结绳记事到后来的甲骨成文,从简牍木牍到活字印刷,从纸页书册到屏幕光影,科技文明已经陪伴着教育活动走过了成千上万年,今天,我们终于来到了数字化时代。
今天我们将“数字智能”赋予教育,那又将会为教育领域尤其是儿童教育领域带来怎样的改变?韩愈在《师说》中提出老师职责的三项内容:传道、授业、解惑。这个教育者的核心要义,在今天这个时代仍然适用。数字智能也会像千百年来的木牍简牍、纸页书册一样,成为我们实施教育活动的主要载具之一。
今天的我们正在经历数字大爆炸,由于通信带宽的高速增长,人类过去无数年月沉淀累积的知识经验会在数字网络中以超乎我们想象的速度膨胀,这会带来一个后果,即,无限细分的知识领域层出不穷,超限交织的行业跨界持续发生,教育外延迅速扩大。虽然儿童教育领域会相对具象,但也依然会在时代大潮中发展脉动。
因此,在这种大背景下,如何在儿童教育领域利用基于深度学习的智能交互技术开展高质量教育活动,实施顺应数字时代发展的个性化教育,取得能切实影响儿童后续发展的有益效果,并能够评估反馈?是本文探究的目标。
什么是深度学习?
深度学习是一种机器学习的分支,主要关注利用多层神经网络模型来进行复杂的数据处理和学习任务。深度学习的范围非常广泛,涵盖以下几个方面:
-
图像识别和计算机视觉:深度学习在图像识别和计算机视觉方面取得了重大突破,可以用于人脸识别、目标检测、图像分类、图像生成等任务。
-
自然语言处理:深度学习在自然语言处理方面也有很多应用,包括文本分类、情感分析、机器翻译、语言生成等任务。
-
语音识别:深度学习在语音识别方面也有广泛的应用,可以用于语音识别、语音合成、语音情感分析等任务。
-
推荐系统:深度学习在推荐系统方面也有很多应用,可以用于个性化推荐、广告推荐、内容推荐等任务。
-
强化学习:深度学习在强化学习方面也有一些应用,可以用于训练智能代理在复杂环境中进行学习和决策。
总的来说,深度学习可以应用于各种复杂的数据处理和学习任务,包括图像、语音、文本等多种形式的输入数据。它的范围非常广泛,并且在许多领域取得了重大的研究和应用成果。
二、数字智能应用于教育的现状及趋势
2.1 国内研究现状
随着国家与教育部门相继出台了一系列支持政策,鼓励引导数字化、智能化技术在教育领域的创新应用,大量与教育领域相关的互联网、软件和信息技术服务、科学研究和技术服务、元宇宙等数字化和智能化相关行业快速发展,更催生了不少新形态接连出现,如数字体验馆、5D观景台等以打造沉浸式空间场景为主的业态,也有如元宇宙校园、WEB3.0教室等以建立完全虚拟的线上空间场景为主的业态。
场景需求也带动了技术进一步发展,人工智能、大数据、云计算、虚拟现实、虚幻引擎等新一代信息技术与数字技术不断突破、创新,为数字化、智能化技术在教育领域的应用提供了强有力的技术支撑。这样,数字化、智能化与各种教育场景深度融合,形成了多样化、个性化、智能化的教学模式和学习方式。
但是,我们也要看到,由于儿童教育领域场景的复杂性,数字智能相关技术在应用时如果把握不好,也很容易出现“水土不服”的情况,对老师与家长关心的某些问题没有很好的解决,有时还会带来二次伤害。
所以,数字智能在儿童教育领域的应用虽然已经取得了一定成果,但未来需要发展的地方将会更多,我们需要通过更加努力的工作,推动“数字智能”在儿童教育领域更广泛、更深入、更有效的应用。
2.2 国际研究现状
当前,在人工智能技术快速发展的推动下,国际上将数字智能技术应用于儿童教育领域也产生出了不少成果。利用数字智能技术为学习者提供个性化、自适应、沉浸式的学习场景和资源环境,国际上已经有许多研究机构和项目致力于构建和评估这样的数字化、智能化的学习环境。
比如美国国家科学基金会资助的Smart and Connected Communities for Learning项目就是一个旨在促进社区智能化和连接性的学习项目。该项目通过技术手段改善社区的教育和学习环境,提高教育质量和机会均等性。该项目的核心是通过建设智能和互联的社区,为学习者提供更加灵活、个性化的学习体验,同时促进社区成员之间的互动和合作。该项目将涉及多个学科领域,包括计算机科学、教育、社会科学等,以解决社区中存在的教育问题,并提高社区成员的学习效果和满意度。
国际上也在大力发展智能技术支持下的智慧教学,这是利用数字智能技术辅助教师进行教学设计、教学实施、教学评价等活动的教学模式,国际上也有许多研究者和开发者利用语音识别、图像识别、情绪识别等技术,开发了各种智能教学系统和工具。
例如 IBM Watson Education是IBM专门针对教育行业开发的平台和工具。通过这些工具,IBM希望能够助力教育工作者和学生们提高学习效果,打造个性化的学习体验,再比如,Google Classroom是一种帮助老师在课堂上布置任务并收集及时反馈的程序。
同时,国际上机器学习技术的发展对个性化教育有着显著的推动作用,个性化教育根据每个学习者的特点和需求,提供适合其水平、兴趣、目标等的学习内容和路径的学习模式。国际上有许多研究者和开发者利用大数据分析、机器学习、深度学习等技术,开发了各种个性化学习系统和工具,例如,位于纽约的网上教育公司Knewton,核心产品是在线学习工具,可针对每一位学习者的个性化需求提供智能适应学习方案进行适配。Knewton通过与出版商合作将各类课程材料进行数字化,适配学习技术是它的核心技术,通过数据搜集、推断及建议三部曲来提供个性化的教学。另外,还有美国的DreamBox Learning 是一个在线数学学习平台,主要面向幼儿园到五年级的学生提供数学学习服务。它具有自适应性和自我指导性,可以根据学生的学习进度和准备程度定制学习路径。学生可以在安卓、iPad和网络浏览器上使用,学习活动包括在线数学课程、谜语、游戏和其他数学相关课程。
可见,国际上对数字化、智能化在儿童教育领域的应用虽然已经取得了一些成果和进展,但也面临着一些问题和挑战,例如数据安全、伦理道德、教师角色、教育公平等。未来,更是需要进一步加强跨学科交流合作、推动技术创新和应用转化、关注人工智能、数字化、虚拟现实对教育变革与创新的影响与价值。
2.3 未来发展趋势
未来,随着人工智能技术、虚拟现实技术、感知交互技术等数字化、智能化技术的不断突破与创新,将为数字智能在儿童教育领域的应用提供更强大的技术底层支撑。并且,AIGC工具逐渐迭代,使得内容的创造生产成本进一步降低,更带动了深度学习、知识图谱、自然语言大模型处理、机器人与智能控制等技术将进一步提升教育的数字化、智能化水平,实现目标更精准、场景更自适应、交互更便捷、体验更沉浸的教学样态和学习方式。
同时,数字智能技术将更广泛地渗透到儿童教育领域的各个环节和场景之中,为教育的变革创新提供更多可能性。比如通过数字智能技术构建泛在化虚实交互的实景化游戏环境,并通过针对性的主题游戏对儿童实施个性化评估、指导,提供适合该名儿童的游戏化学习内容与反馈,从而构建更加科学有效的数字化智慧教学系统,并帮助教师更加便捷地创建数字化游戏内容与数字化游戏材料。逐渐通过数字智能技术在儿童教育领域中实现数字化内容、数字化环境、数字化玩教具材料的协同一致,实现优质数字教育资源的共享协作,促进学校家园社区之间的沟通与合作。
并且,应用在儿童教育领域的数字智能技术还将与其他的前沿技术相关领域进行跨界融合创新,这会为儿童教育领域的数字化带来更多惊喜与挑战。例如,将使用数字智能技术制作的玩教具/道具与带有增强现实游戏效果的环境设计叠加,打造更具趣味性和参与感的奇幻式交互学习场景。再比如,应用在儿童教育领域的数字智能技术将与脑科学、情境认知科学、儿童心理学等领域结合,探索更符合儿童发展规律和认知特点的教授方法和评价指标,并可以在数据驱动式评价反馈能力的基础上,与STEM、创客、艺术等领域相结合,培养儿童动手、动脑、思维、创新创造等能力。
总之,数字智能在未来随着技术的进一步发展,将会成为儿童教育领域开展数字化教学活动的基本载具,再配合AIGC、融合显示等技术,实现相关技术创新、场景应用深化、主题融合创新的持续迭代发展的新格局,这一应用方式也将会为儿童教育数字化改革与发展提供新的思路和方法,为数字智能技术在儿童教育领域的应用提供新的参考模型。
三、数字智能框架
3.1 动态演化的结构
“数字智能”是一套可以将数字化、智能化、游戏化的内容、环境、以及玩教具材料进行虚实融合交互并开展儿童教育活动的核心系统框架与体系结构,该结构既是最小完整性的实施方法,也会随着儿童教育领域中数字化游戏活动的开展而动态演化。
上图描绘了数字智能在儿童教育领域应用的最小完整性框架,它也是实施虚实交互的儿童数字化教育游戏活动的路径指南。
在AIGC工具链流行之前,人们制作内容素材主要使用UGC工具链,如Photoshop、AE、Maya等工具,我们这里借用“UGC-用户创作内容”来指代人工创作,这通常由设计师、画手、动画师、音频师、后期工程师等不同角色的人员配合共同完成内容创作。
而随着AIGC工具链的逐渐兴起,某些内容素材将不再需要人工创作,仅需要设计师使用AIGC工具(这些AIGC工具应用了如DALL-E、Diffusion、GANs等生成模型,以及语言模型)通过自然语言对话交互的方式传达意图(如主题、构图、元素、概念等自然语言的描述),就可以在很短时间内生成一幅图像。
我们可以看到,虽然UGC工具链与AIGC工具链会在一段比较长的时期内共存,但在这期间,人工与AI在内容生产的协同方式上会以小步快跑的样态迅速迭代,这一点我们要尤为注意,在使用中要不断跟随调整、研发创新。
当我们通过这两组工具链的协同,产生了既有策划需要的素材之后,就会进入下一组关键环节,这就是2D/3D交互制作引擎的使用。在这个领域中有很多优秀的引擎可供选择,其中Cocos Creator 、Unity 、Unreal Engine都存在各自特长。有的擅长制作基于浏览器的交互内容(WebApp),有的擅长3D游戏在虚拟现实设备中的表现,有的具备强大的图形渲染能力,可以呈现出逼真的光影效果和细腻的纹理贴图,以便于模拟世界。
从儿童教育领域对数字化应用目的上看,我们更倾向于选择制作WebApp的交互内容(游戏)形式。因为轻量级游戏在儿童教育领域的情境活动中会表现的更加灵活,可以适应更多式样的系统,还可以在家园/校共育中传递。
虽然3D风格的交互内容更加酷炫,但从适应上来看,为达到某些教育目的,2D风格的交互内容(游戏)很多时候已经是足够了,因为2D与3D在所表达的教育点上很多时候并没有太大区别,而趣味性、探索性、可玩性等则依赖下一章节所涉及到的数字时代中游戏实景化的底层逻辑,在这一点上更加依赖数字智能的体系化协同,会有详细探讨。
制作好的交互内容(WebApp)若想发挥作用,运行它的设备形态是一个重要因素,大部分情况下,教室里只有一体机或者电子白板,要达到数字化教育活动的要求,我们恐怕还要思考更多形态的配套。因为,如果辛苦制作的交互内容(游戏)仅仅只能让使用者站在设备面前通过触控的方式点几下屏幕的话,很难想象学生能够有多少花样参与其中。
由此,市场上出现了配套肢体位置交互的深度摄像头、用于移动交互的激光雷达、可以设定墙面区域交互的红外触摸框等,都是为了解决现实中的人类与虚拟中的内容如何交互的问题,当然,还有一类产品在这种交互中被更加广泛的使用,这就是手柄、遥控器等。虽然它们都可以被称为配件,但在儿童教育领域中,我还是更愿意将它们归类在装备的选项里。
因为顺着这种交互的思路进一步细分和演变,会发现一个庞大的数字智能硬件产品体系将呈现在眼前,它们无时无刻不连接着正在运行着的数字内容(游戏),它们会变形进玩教具中,把教育材料改造成数字智能态;它们会嵌入环境中,把环境改造成数字智能态;它们也会演变成不同种类的穿戴产品,陪伴儿童完成教育活动。所有这一切都要求“它们”从“配件”转变为“装备”-- 儿童教育活动的数字智能装备。它们要独立自主地运行,并在自身(内部)具备轻量级边缘计算的能力,强大一点的可以运行机器学习算法(神经网络等),这一部分我们在下一节细化。因为只有这样,把儿童教育领域中教育活动开展的环境和材料都调动起来,数字智能才能够深度影响儿童,并像传统的环境和材料一样,切实发挥作用。我进而把上述提到的这些“数字智能态”统称为“数字智能产品端”,它们有一个共同的特点:其内部都运行着可以与上位平台(内容)交互的各种样态的“数字智能微架构”,包括刚才提到的边缘机器学习的算法都是运行在“数字智能微架构”之中。
制作好的数字交互内容(游戏/WebApp)和数字智能产品端发生连接并实施交互机制的是数字智能云平台(私有云/公有云),其实,这里的“云平台”是泛指,包含一切可以提供连接和管理属性(接口/机制)的服务端,它能够保证传入进来的数字内容持续安全可靠的运行,并实时与产品端进行交互响应。构建智能云平台的方式有很多,其中选择好建立连接的协议栈、做好对内容可见的虚拟化、以及在内容端与产品端实施交互的策略等,都将会显得尤为重要。
数字智能产品端变形进各类材料造型中的过程,也是产业化的过程。在这里可以使用3D打印制作道具,也可以通过DIY手工将对身边可见材料进行改造,当然也可以直接使用工业化的方式开模生产。在这里,数字智能产品端的核心组件是最小完整性的,也会根据感知和功能以多种不同形态出现,并基于各类组网方法共同形成整体联动的感知反馈的交互体系。
数字智能云平台的另一个重要作用是支撑数字智能业务系统的建立,数字智能业务系统根据业务场景以不同形态呈现,可安装软件是一类主要形式(包括固定端/移动端等),也包括像微信小程序这样打开即用的方式。本质上则是可与各种主机设备结合的软件应用,它们运行在业务主机上,并由主机连接并控制外围各类支撑设备实现融合显示或其它相关能力。
有时也会出现创作的数字内容在第三方云平台上的情况,数字智能云平台可以通过数据穿透的方式接入第三方平台并驱动其中的数字内容运行,这一过程与数字智能业务系统兼容第三方应用类似,不同的是,第三方应用可能会以独立形态在业务主机上运行,通过极少的指令传递与数字智能业务系统完成互动。
这样,我们就描述了数字智能最小完整型的框架结构模型,它可以成为构建数字智能态的逻辑参考,同时也一定是一套动态演化的结构,虽然最小完整型的特点让它具备适当的稳定性,但数字产业正随着AI与WEB3.0的快速发展而急剧变化,模型中的某些环节也许会以我们今天预料不到的结构出现,这也有赖于我们在今后的应用中不断尝试和探索。
3.2 边缘机器学习
边缘机器学习是一种在智能硬件上运行机器学习算法的技术,它可以利用硬件上有限的计算能力和存储空间,实现数据本地处理及模型本地更新。在各类数字智能产品端应用边缘机器学习算法,从趋势意义上来说是一种必然选择。在儿童教育领域应用的数字智能产品一般都会对实时性、组合力、本地化等提出较高要求,小规模边缘机器学习恰恰是应对这类碎片式散化组合应用的最优解。
在数字智能产品端应用边缘机器学习具备以下优势:
- 降低延时:边缘机器学习可以避免部分数据在网络中的传输以及在中心服务器的处理,提高实时性。
- 节省带宽:边缘机器学习分散部分数据对网络的冲击,可以降低网络阻塞,减少并发风险。
- 保护隐私:边缘机器学习可以在硬件上对数据进行加密和脱敏,从而防止数据泄露和被攻击。
- 适应环境:边缘机器学习可以根据数字智能产品的硬件状态和环境变化,动态调整模型的参数和结构,继而提高模型的鲁棒性和泛化能力。
在儿童教育领域应用边缘机器学习必定充满着挑战与机遇。比如,在儿童实景化游戏活动的体感类玩教具中应用边缘机器学习模型,通过对玩教具一段时间的使用,为该名儿童找到最适合的行为姿态与运动方式,让该名儿童在游戏化的教育活动中以最契合自身运动能力的感觉发挥,成为最好的自己,同时系统也获得了该名儿童部分个性化的感统运动数据,并进行评估,这其实也是一种对儿童自身运动数据的无感采集方式,让儿童在自驱型动因的激发下参与教育活动,在无知觉间完成了数据反馈。
在儿童教育领域实现边缘机器学习要尤为注意对应用目标的模型构建,因为儿童教育活动中用到的玩教具等材料产品种类繁多、用处不同,我们要能够在众多应用场景中清醒的提炼出相对通用的数据模型,这要从儿童教育活动的底层逻辑进行设想。
3.3 数据驱动的交互体系
在最小完整型的数字智能框架中,数据无处不在。通过交互引擎制作的内容(游戏)要与数字智能云平台进行通信,数字智能云平台要与数字智能产品端进行通信,数字智能业务系统也要与数字智能云平台进行通信,与第三方平台和应用的兼容对接还是要进行数据通信。大量的数据在架构中随处流转,又将如何进行采集、如何进行评估、如何进行反馈呢?
因此,我们要回归目的。我们要构建的是数字智能在儿童教育领域的应用,那么,这些应用的最主要特征是什么?是在数字智能框架下的内容端与产品端的游戏化交互!在数字智能体系建立好之后,内容端与产品端的持续变化迭代,才是数字智能在儿童教育领域中应用的精髓所在。
每一场儿童教育游戏活动所需要的游戏内容与玩教具材料都可能会不同,不同类型的游戏活动又存在着不同的玩法,数据要积累在哪里才是最合适的?目前看来,数据积累在游戏内容中可能是最合适的,过程可能是这样的:产品端与内容端进行着数据的持续交互,通过内容端的算法进行循环触发,并随着每次数据交互的循环,数字内容在交互链路上采集到全新的数据表,并在游戏内容里对数据表进行初步清洗,再按照既定的算法接口提交至平台。这其实就是数据驱动的交互体系。
建立数据驱动型交互体系的概念,将会有利于建立内容端与产品端交互游戏活动的过程自洽,也会在考虑通过数字智能服务儿童教育领域时的切入点上有所帮助。
3.4 分布式系统与混合云构建
考虑到多类复杂应用场景的部署实践,在儿童教育领域中应用的数字智能业务系统可以设定为分布式系统,这种由多个独立计算节点通过网络连接而成的系统,可以联动着完成一些复杂的任务,可以在多台业务主机上部署,具有高可用性、高扩展性、高容错性等特点。这样就可以适应儿童教育环境的多变性,比如,可以通过多台业务主机分别在不同区角实施显示投影,并通过数字智能业务系统的分布式特点进行跨区域呈现融合,同时这个系统还可以作为一个整体机制参与播控数字智能云平台的内容,并与数字智能玩教具等产品端互动。
相对应的,数字智能云平台是混合云架构,这是一种将公有云、私有云和本地基础架构结合并统一的云计算模式,它可以根据不同的业务需求和场景,灵活选择最适合的云服务环境。混合云具备一致性、可扩展性、快速迭代、资源优化等诸多优势。由于儿童教育环境的特殊性,很多情况下需要将服务实施本地部署,又要进行远程维护,混合云架构就要成为应当选择。
严格意义上讲,混合云本身就是一种分布式系统。分布式系统与混合云构建的具体策略则是需要在不同的云环境中根据具体的环境、数据场景和应用形态实现。这是数字智能在儿童教育领域中开展应用的基本能力和基础设施,也是为数字智能开展深化应用之前的首要准备工作之一。
3.5 内容引擎与AIGC协同
内容端(游戏)与产品端(材料)在儿童教育领域中的应用不是从数字智能才开始的,但数字智能会为游戏和材料带来全新的意义,数字智能会以数字化为基底,将游戏与材料在儿童教育活动中全景式地联动起来。这一过程其实对内容端(游戏)的制作提出了与以往不同的要求。
在交互内容制作领域(尤其是交互游戏内容的制作),存在很多优秀的2D/3D交互内容制作引擎,它们确实各有特点,但在导出WebApp式轻量级交互游戏的内容上,还存在不小的差异。AIGC发展的已经是如火如荼,但对于游戏化交互内容的制作来讲,还远远不够,当下的交互内容主要还是得由人工完成。AIGC在内容音图素材、程序段、算法参考等方面还是有着相当有力的辅助作用,这对想要通过AIGC提升效率的内容制作者提出了更高要求。未来的内容制作领域,“AIGC协同下的内容开发引擎制作”的方式会成为流行,内容制作者水平的差异将更多的体现在思维、构图、鉴赏、表达等综合素养和设计、编程等跨界能力上。
其实,AIGC协同带来的冲击还远不止于此,创意、玩法、活动等都可以为我们带来借鉴。
四、写在最后
文阐述了“数字智能”概念,并以数字智能指代逐渐开始盛行的数字化、智能化能力,重点探究了数字智能在儿童教育领域的应用态势,并给出了解决方案的核心框架及要点。同时,本文也着重提出了在数字智能框架下的游戏实景化思路,以构建数字智能实景游戏活动为主要形式的数字化儿童教育活动会成为儿童教育领域应用发展的方向之一。
同时,本文也论证了数字化、智能化、游戏化将成为高效率实施儿童教育有效载具的原因,并通过两则数字智能实景游戏的项目给出参考,并总结出建立数字智能实景游戏的若干原则及应用要点。
在儿童教育领域中推广数字化形态、应用数字化产品、探讨数字化发展趋势愈加凸显的当下,给出切实可行的解决方案迫在眉睫。其实应该看到,文中虽然一直提及数字智能在教育领域的应用,但是讲的更多的是数字智能应用的实现部分,而对于数字智能应用的活动方案部分提及不多,一是受限于篇幅,二来与论文主题的重点稍显偏差,因此,在论文的总结中着重强调一下。
如果教育领域想要将“数字智能”代表的数字化、智能化、游戏化能力应用得好,在产业生态中,还要有对口的教育服务角色的同仁们努力,这样才能够给到广大师生们完整的教育活动落地方法和持续跟进的服务陪伴,为他们思考,为他们创造,为他们解决执行中遇到的各类思维障碍等等。
所以,数字智能在儿童教育领域的应用是由产品的制造者们与服务的提供者们、以及终端的消费者们共同缔造出来的,所以,基于深度学习的智能交互技术为我们带来的既是一场进化,也是一种循环。