政安晨:【Keras机器学习示例演绎】(三十八)—— 从零开始的文本分类

本教程通过Keras演示从原始文本进行文本分类,使用IMDB数据集,涉及数据准备、TextVectorization、1D convnet模型构建与训练,以及端到端模型的制作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

设置

加载数据IMDB 电影评论情感分类

准备数据

数据矢量化的两种选择

建立模型

训练模型

在测试集上评估模型

制作端到端模型


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:从原始文本文件开始进行文本情感分类。

简介


本示例展示了如何从原始文本(磁盘上的一组文本文件)开始进行文本分类。我们在 IMDB 情感分类数据集(未处理版本)上演

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值