原理
拓扑排序是用来解决DAT(有向无环图)的问题,对于出的序列并不一定是唯一的。常会被用来解决做存在依赖关系的问题,例如“要做A任务时必须先完成B任务”。其时间复杂度为O(n + m)(n为点的个数,m为边的条数)
代码思路
使用vector来存储图,用一个ind数组代表该点的入度,out数组代表该点的出度,对于一个序列,我们首先遍历每个点,每个入度为0的点塞入队列,用bfs遍历下去,遍历过程中,每遍历一个点便让ind减一,当ind减为0时再塞入队列中。对于最后结果,这个序列的尾就为出度为0的点。
代码实现
例题 洛谷P4017 最大食物链计数
题目背景
你知道食物链吗?Delia 生物考试的时候,数食物链条数的题目全都错了,因为她总是重复数了几条或漏掉了几条。于是她来就来求助你,然而你也不会啊!写一个程序来帮帮她吧。
题目描述
给你一个食物网,你要求出这个食物网中最大食物链的数量。
(这里的“最大食物链”,指的是生物学意义上的食物链,即最左端是不会捕食其他生物的生产者,最右端是不会被其他生物捕食的消费者。)
Delia 非常急,所以你只有1秒的时间。
由于这个结果可能过大,你只需要输出总数模上 80112002 的结果。
输入格式
第一行,两个正整数 n、m表示生物种类 n 和吃与被吃的关系数 m。
接下来 mm 行,每行两个正整数,表示被吃的生物A和吃A的生物B。
输出格式
一行一个整数,为最大食物链数量模上 80112002 的结果。
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
#define FAST ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define mem(a,x) memset(a,x,sizeof(a))
#define all(x) (x).begin(), (x).end()
#define pb push_back
#define fi first
#define se second
#define INF 0x3f3f3f3f
#define int long long
const int mod1 = 1e9 + 7, mod2 = 998244353, mod = 80112002;
const int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
const int N = 1e5 + 5, M = 2e5 + 5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m;
vector<int> v[N];//存储图
int ind[N];//入度
int out[N];//出度
int res[N];
void bfs(){
queue<int> q;
for (int i = 1; i <= n; i++){
if(!ind[i]){
q.push(i);
res[i] = 1;
}
}
while(q.size()){
int u = q.front();
q.pop();
for (int i = 0; i < v[u].size(); i++){
int x = v[u][i];
ind[x]--;
if(!ind[x]){
q.push(x);
}
res[x] = (res[x] + res[u] + mod) % mod;
}
}
return;
}
signed main(){
FAST;
cin >> n >> m;
rep(i, 1, m){
int a, b;
cin >> a >> b;
ind[b]++;
out[a]++;
v[a].pb(b);
}
bfs();
int ans = 0;
rep(i, 1, n){
if(!out[i]){
ans = (ans + res[i] + mod) % mod;
}
}
cout << ans << endl;
return 0;
}