acm总结——拓扑排序

原理

拓扑排序是用来解决DAT(有向无环图)的问题,对于出的序列并不一定是唯一的。常会被用来解决做存在依赖关系的问题,例如“要做A任务时必须先完成B任务”。其时间复杂度为O(n + m)(n为点的个数,m为边的条数)

代码思路

使用vector来存储图,用一个ind数组代表该点的入度,out数组代表该点的出度,对于一个序列,我们首先遍历每个点,每个入度为0的点塞入队列,用bfs遍历下去,遍历过程中,每遍历一个点便让ind减一,当ind减为0时再塞入队列中。对于最后结果,这个序列的尾就为出度为0的点。

代码实现

例题 洛谷P4017 最大食物链计数

题目背景

你知道食物链吗?Delia 生物考试的时候,数食物链条数的题目全都错了,因为她总是重复数了几条或漏掉了几条。于是她来就来求助你,然而你也不会啊!写一个程序来帮帮她吧。

题目描述

给你一个食物网,你要求出这个食物网中最大食物链的数量。

(这里的“最大食物链”,指的是生物学意义上的食物链,即最左端是不会捕食其他生物的生产者,最右端是不会被其他生物捕食的消费者。)

Delia 非常急,所以你只有1秒的时间。

由于这个结果可能过大,你只需要输出总数模上 80112002 的结果。

输入格式

第一行,两个正整数 n、m表示生物种类 n 和吃与被吃的关系数 m。

接下来 mm 行,每行两个正整数,表示被吃的生物A和吃A的生物B。

输出格式

一行一个整数,为最大食物链数量模上 80112002 的结果。

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull; 
#define FAST ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define mem(a,x) memset(a,x,sizeof(a))
#define all(x) (x).begin(), (x).end()
#define pb push_back
#define fi first
#define se second
#define INF 0x3f3f3f3f
#define int long long
const int mod1 = 1e9 + 7, mod2 = 998244353, mod = 80112002;
const int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
const int N = 1e5 + 5, M = 2e5 + 5;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} 
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int n, m;
vector<int> v[N];//存储图
int ind[N];//入度
int out[N];//出度
int res[N];
void bfs(){
    queue<int> q;
    for (int i = 1; i <= n; i++){
        if(!ind[i]){
            q.push(i);
            res[i] = 1;
        }
    }
    while(q.size()){
        int u = q.front();
        q.pop();
        for (int i = 0; i < v[u].size(); i++){
            int x = v[u][i];
            ind[x]--;
            if(!ind[x]){
                q.push(x);
            }
            res[x] = (res[x] + res[u] + mod) % mod;
        }
    }
    return;
}
signed main(){
    FAST;
    cin >> n >> m;
    rep(i, 1, m){
        int a, b;
        cin >> a >> b;
        ind[b]++;
        out[a]++;
        v[a].pb(b);
    }
    bfs();
    int ans = 0;
    rep(i, 1, n){
        if(!out[i]){
            ans = (ans + res[i] + mod) % mod;
        }
    }
    cout << ans << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

snowwwwi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值