Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) |
#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T> inline void gmax(T &a,T b){if(b>a)a=b;}
template <class T> inline void gmin(T &a,T b){if(b<a)a=b;}
const int N=0,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
int main()
{
scanf("%d",&casenum);
for(casei=1;casei<=casenum;casei++)
{
int n,a,b;
scanf("%d%d%d",&n,&a,&b);
printf("Case #%d: %s\n",casei,(n/gcd(a,b))&1?"Yuwgna":"Iaka");
}
return 0;
}
/*
【trick&&吐槽】
这道题之所以给了这么多样例,就是为了让这题的结论更容易观察,让这题更算得上是签到题
【题意】
共有T([1,500])组数据。
每组数据有1~n([2,20000])共n个正整数。
一开始对于已有数字集合,除了a,b(1<=a,b<=n && a≠b),其他数字都是不存在的。
对于每次成功的操作,我们是从已有数字集合之中,任选两个不同数x,y,得到z=x-y或者z=x+y,如果z是在[1,n]范围,而且z这个数字当前不存在,那我们就可以得到这个新数z,并把其放入已有数字集合之中。
Yuwgna先手,Iaka后手,谁无法操作谁就输了。问你最后的winner是谁。
【类型】
签到 博弈 gcd
【分析】
首先应该想的问题是,数轴的范围是[1,n],但是我们能选的数究竟有什么呢?
样例中的{3 1 3}{8 6 8}这样组数据,前者可以取遍1,2,3,后者却只能取得2,4,6,8,让我们很快想到实际能选取的数字范围要由gcd判定。
我们先令g=gcd(x,y),那显然我们能取的数,必然是g的倍数。
于是求出,接下来能取的数的个数num=n/g-2
所以答案就是——
【时间复杂度&&优化】
O(Tlogn)
【数据】
16
2 1 2
3 1 3
67 1 2
100 1 2
8 6 8
9 6 8
10 6 8
11 6 8
12 6 8
13 6 8
14 6 8
15 6 8
16 6 8
1314 6 8
1994 1 13
1994 7 12
*/