snowy_smile的博客

还没有退役!再打一年!要进Final!有时间还会继续写题解~

【Educational Codeforces Round 1C】【计算几何-极角排序 atan2 long double】Nearest vectors 平面图上原点引出角度最小的两个

C. Nearest vectors
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.

Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.

Input

First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.

The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).

Output

Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.

Sample test(s)
input
4
-1 0
0 -1
1 0
1 1
output
3 4
input
6
-1 0
0 -1
1 0
1 1
-4 -5
-4 -6
output
6 5


#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=1e5+10,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int n;
struct A
{
	int o;
	int x,y;
	long double atan2;
}a[N];
bool cmp(A a,A b)
{
	return a.atan2<b.atan2;
}
/*这组数据会使得出现两个极其接近的
-6427 -6285
-5386 -5267
-3898 7239
-3905 7252*/
LL K(LL x){return x*x;}
void Test()
{
	A a,b,c,d;
	scanf("%d%d",&a.x,&a.y);
	scanf("%d%d",&b.x,&b.y);
	scanf("%d%d",&c.x,&c.y);
	scanf("%d%d",&d.x,&d.y);
	LL top1=K(a.x*b.x+a.y*b.y);
	LL top2=K(c.x*d.x+c.y*d.y);
	LL bot1=(LL)(a.x*a.x+a.y*a.y)*(b.x*b.x+b.y*b.y);
	LL bot2=(LL)(c.x*c.x+c.y*c.y)*(d.x*d.x+d.y*d.y);
	printf("%lld/%lld\n",top1,bot1);
	printf("%lld/%lld\n",top2,bot2);
}
void Atan2()
{
	printf("%lf\n",atan2(0,1));//0
	printf("%lf\n",atan2(1,0));//PI/2
	printf("%lf\n",atan2(0,-1));//PI
	printf("%lf\n",atan2(-1e-8,-1));//-PI
	printf("%lf\n",atan2(-1,0));//-PI/2
}
int main()
{
	//Test();
	//Atan2();
	while(~scanf("%d",&n))
	{
		for(int i=1;i<=n;i++)
		{
			a[i].o=i;
			scanf("%d%d",&a[i].x,&a[i].y);
			a[i].atan2=atan2(a[i].y,a[i].x);
		}
		sort(a+1,a+n+1,cmp);a[n+1]=a[1];
		const long double PI2=acos(-1.0)*2;
		long double Angle=PI2+0.1;
		int X,Y;
		for(int i=1;i<=n;i++)
		{
			long double angle=a[i+1].atan2-a[i].atan2;
			if(angle<0)angle+=PI2;
			if(angle<Angle)
			{
				Angle=angle;
				X=a[i].o;
				Y=a[i+1].o;
			}
		}
		printf("%d %d\n",X,Y);
	}
	return 0;
}
/*
【trick&&吐槽】
1,atan2还是很棒哒
2,long double也是吊吊哒

【题意】
平面坐标系中给你n(1e5)个点(坐标是[-10000,10000]之间的整数),代表n条从原点引出的向量。
向量长度不为0,向量不共线,让你求出夹角最小的那一对向量。

【类型】
计算几何-极角排序

【分析】
1,atan2(纵坐标y,横坐标x)可以返回一个(0,0)->(x,y)的角度哈希值——注意!纵坐标在前,横坐标在后。
atan2的自变量是任意坐标值,然而不能包括原点本身,否则会有排序出错。
atan2的因变量是(-PI,PI]之间的值

printf("%lf\n",atan2(0,1));//0
printf("%lf\n",atan2(1,0));//PI/2
printf("%lf\n",atan2(0,-1));//PI
printf("%lf\n",atan2(-1e-8,-1));//-PI
printf("%lf\n",atan2(-1,0));//-PI/2
返回这个向量相较于(1,0)的的角度差。我们可以用它直接比较角度大小关系。

2,long double还是很好用,可以用c++输出哦

3,这题更高的精度可以通过分数类实现,以下给出zimpha的大分数大小比较代码
static int cmp(LL n1,LL d1,LL n2,LL d2)
{
    if(!(n1 && n2))return n1==n2?0:n1<n2?-1:1;
    if(n1>0 ^ n2 >0)return n1<0?-1:1;
    if(n1<0) return rc(d1,-n1,d2,-n2);
    return rc(d2,n2,d1,n1);
}
static int rc(LL n1,LL d1,LL n2,LL d2)
{
    LL k1=n1/d1,k2=n2/d2;
    if(k1!=k2)return k1<k2?-1:1;
    LL r1=n1%d1,r2=n2%d2;
    if(r1&&r2) return rc(d2,r2,d1,r1);
    if(r1 && !r2)return 1;
    if(r2 && !r1)return -1;
    return 0;
}

【时间复杂度&&优化】
O(nlogn)

【数据】
4
-6427 -6285
-5386 -5267
-3898 7239
-3905 7252

a.x*b.x+a.y*b.y=
*/


阅读更多
版权声明:题解中哪里写错请一定要指出来QwQ 转载还请注明下出处哦,谢谢^_^ https://blog.csdn.net/snowy_smile/article/details/49924685
上一篇【Educational Codeforces Round 1B】【字符串平移 水题】Queries on a String 字符串平移水题
下一篇【Educational Codeforces Round 1D】【DFS 联通块打标记法】Igor In the Museum 联通块内墙的面数
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭