【HDU5728 2016 Multi-University Training Contest 1F】【数论+迭代 欧拉函数线性筛+积性递归】PowMod 欧拉函数积性性质+无穷幂迭代

6 篇文章 1 订阅
3 篇文章 0 订阅

PowMod

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 650    Accepted Submission(s): 209


Problem Description
Declare:
k=\sum_{i=1}^{m} \varphi (i*n)\ mod\ 1000000007

n  is a square-free number.

\varphi  is the   Euler's totient function.

find:
ans=k^{k^{k^{k^{...^k}}}}\ mod \ p

There are infinite number of   k
 

Input
Multiple test cases(test cases   \leq 100 ), one line per case.

Each line contains three integers,   n, m  and   p .

1 \leq n, m, p \leq 10^{7}
 

Output
For each case, output a single line with one integer, ans.
 

Sample Input
  
  
1 2 6 1 100 9
 

Sample Output
  
  
4 7
 

Author
HIT
 

Source

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 0, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int casenum, casei;
int n, m, P;

//欧拉函数线性筛
const int TOP = 1e7 + 10;
bool notprime[TOP];
int p[TOP / 5], pnum;
int phi[TOP], phisum[TOP];
void Euler_All()
{
	phi[1] = 1; phisum[1] = 1;
	for (int i = 2; i < TOP; ++i)
	{
		if (!notprime[i])
		{
			p[++pnum] = i;
			phi[i] = i - 1;
		}
		for (int j = 1; j <= pnum && p[j] * i < TOP; ++j)
		{
			notprime[p[j] * i] = 1;
			if (i % p[j] == 0)
			{
				phi[p[j] * i] = phi[i] * p[j];
				break;
			}
			else phi[p[j] * i] = phi[i] * (p[j] - 1);
		}
		phisum[i] = (phisum[i - 1] + phi[i]) % Z;
	}
}

//sum(n, m) = phi[p] * sum[n/p][m] + sum[n][m/p]
LL sum(int n, int m)
{
	if (n == 1)return phisum[m];
	if (m == 1)return phi[n];
	if (m < 1)return 0;
	for (int i = 1;; ++i)if (n%p[i] == 0)
	{
		int pp = p[i];
		return (phi[pp] * sum(n / pp, m) + sum(n, m / pp)) % Z;
	}
}

LL mul(LL x, int p, int Z)
{
	LL y = 1;
	while (p)
	{
		if (p & 1)y = y*x%Z;
		x = x*x%Z;
		p >>= 1;
	}
	return y;
}

//我们可以利用a^b%P==a^(euler[P]+b%euler[P])%P来递归地计算k^( k^( k^(无穷迭代) ) )
//这里的b,就是k^( k^( k^(无穷迭代) ) )
int cal(int k, int P)
{
	if (P == 1)return 0;			//答案确定
	int tmp = cal(k, phi[P]);		//迭代求出b%euler[P]
	return mul(k, phi[P] + tmp, P);	//代入公式求解
}

int main()
{
	Euler_All();
	while (~scanf("%d%d%d", &n, &m, &P))
	{
		int k = sum(n, m);
		printf("%d\n", cal(k, P));
	}
	return 0;
}
/*
【题意】
我们定义k=∑(i=1~m)phi(i*n)%Z
n是无平方因子的数
让我们求k^(k^(k^(k...)))

【类型】
数论

【分析】
首先,我们要明确——phi()是一个积性函数。
于是,我们可以对于每个(某个)质因子求贡献。

我们考虑n个某个质因子p,我们设∑(i=1~m)phi(i*n)=sum[n][m](就是把所求的东西设一下)
然后我们考虑将质因子p的贡献单独处理——
得到∑(i=1~m)phi[i*n]=phi[p]*∑(i=1~m)phi(i*n/p)+∑(i=1~m/p)phi(i*n)

为什么呢?
1,对于i%p!=0,那么显然——
∑(i=1~m,i不为p的倍数)phi[i*n]=phi[p]*∑(i=1~m,i不为p的倍数)phi(i*n/p)
2,对于i%p==0,那么则有——
∑(i=1~m,i为p的倍数)phi[i*n]=(phi[p]+1)*∑(i=1~m,i为p的倍数)phi(i*n/p)

也就是说——
我们考虑将质因子p的贡献单独处理之后——
得到∑(i=1~m)phi[i*n]=phi[p]*∑(i=1~m)phi(i*n/p)
                      +∑(i=1~m/p)phi(i*n)

也就是说——
sum(n,m)=phi[p] * sum[n/p][m] + sum[n][m/p],p是任意一个n的素因子
于是我们可以递归求值,最终求出k的值。
递归的终点是——
sum[1][m]=phisum[m]
sum[n][1]=phi[n]

然后利用a^b % p == a^(phi[p] + b % phi[p])来递归求出k^(k^(k^(k...)))

这个解法的核心之处,在于我们尽管不知道b是什么,但是当b迭代到一定程度之后,就会降为固定值。然后返回解。

*/


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值