1.输出一个整数的每一位。2. 编程实现: 两个int(32位)整数m和n的二进制表达中,有多少个位(bit)不同?

本文介绍了两种实用的位操作技巧:一是如何通过左移和按位与操作来逐位输出整数的所有比特位;二是利用异或操作来找出两个整数的不同比特位数量,并提供了具体的C语言实现代码。

1.从最高位开始依次输出:把1左移31位,就是最高比特位,再&1,进行判断0或1;循环直到最低位。

#include<stdio.h>
#include<windows.h>
int showDataBits(int x)
{
	int i = 31;
	for (i = 31; i>=0; i--)
	{
		if (x&(1<<i))
		{
			printf("1");
		}
		else{
			printf("0");
		}
	}
}
int main()
{
	int x = 25;
	showDataBits(x);
	system("pause");
}

   结果是: 

2.通过异或^求出两个数中的不同数,然后计数有多少位不同。输入例子: 1999 2299 。输出结果为:7.

int main()
{
	int a = 1999;
	int b = 2299;
	int count = 0;
	int num= a^b;//相异为1,相同为0。求出ab中不同位。
	while( num)
	{
		count++;
		num = num&(num - 1);//统计1的位数。
	}
	printf("%d\n", count);
	system("pause");
	return 0;
}

通过函数实现:

#include<stdio.h>
#include<windows.h>
int countBit(int i)
{
	int n = 0;
	while (i){
		i = i&(i - 1);
		n++;
	}
	return n;
}
int main()
{
	int n=countBit(1999 ^ 2299);
	printf("%d", n);
	system("pause");
	return 0;
}




以下是用 Java 实现的程序:**输入一个整数输出二进制表示中 `1` 的个数**(也称为“汉明重量”或 Hamming Weight)。 ```java import java.util.Scanner; public class CountBinaryOnes { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.print("请输入一个整数:"); int number = scanner.nextInt(); // 方法1:使用 Integer.bitCount() —— 最简洁高效 int count1 = Integer.bitCount(number); System.out.println("该数的二进制表示中1的个数为(方法1):" + count1); // 方法2:手动移统计(推荐理解原理) int count2 = 0; int n = number; // 使用副本,避免修改原值 while (n != 0) { count2 += n & 1; // 取最低是否为1 n >>>= 1; // 无符号右移一位(处理负数) } System.out.println("该数的二进制表示中1的个数为(方法2):" + count2); // 方法3:使用 Brian Kernighan 算法(高效跳过0) int count3 = 0; int m = number; while (m != 0) { m &= (m - 1); // 每次操作清除最右边的1 count3++; } System.out.println("该数的二进制表示中1的个数为(方法3):" + count3); // 可选:显示该数的二进制字符串形式(补码表示) System.out.println("该数的二进制表示为:" + Integer.toBinaryString(number)); scanner.close(); } } ``` --- ### ✅ **代码解释:** #### 🌟 方法1:`Integer.bitCount(n)` - Java 内置方法,底层使用高效运算优化。 - 支持正数、负数(以补码形式计算)。 - **推荐实际开发中使用。** #### 🌟 方法2:逐右移 & 检查最低 - `n & 1` 判断当前最低是否为 `1`。 - `n >>>= 1` 使用 **无符号右移**,确保负数也能正确处理(不会无限补1)。 - 循环直到 `n == 0`。 - 时间复杂度:O(32) → 固定最多32。 #### 🌟 方法3:Brian Kernighan 算法 - 核心思想:`n & (n - 1)` 会将 `n` 的最右边一个 `1` 变成 `0`。 - 所以每执行一次这个操作,就说明有一个 `1` 被清除了。 - 循环次数等于 `1` 的个数,效率更高,尤其当 `1` 较少时。 - 非常经典的算法技巧。 #### 🌟 显示二进制串:`Integer.toBinaryString()` - 输出整数在内存中的二进制补码表示(不带前导0)。 - 负数会显示完整的32补码形式(如 `-1` 显示为 321)。 --- ### 📌 示例运行: ``` 请输入一个整数13 该数的二进制表示中1的个数为(方法1):3 该数的二进制表示中1的个数为(方法2):3 该数的二进制表示中1的个数为(方法3):3 该数的二进制表示为:1101 ``` > 解释:`13` 的二进制是 `1101` → 包含三个 `1`。 再试一个负数: ``` 请输入一个整数:-1 该数的二进制表示中1的个数为(方法1):32 该数的二进制表示中1的个数为(方法2):32 该数的二进制表示中1的个数为(方法3):32 该数的二进制表示为:11111111111111111111111111111111 ``` > `-1` 在补码中是 32 个 `1`,所以有 32 个 `1`。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值