学习总结篇
so_so_y
start to record bugs <- so hard so brave
展开
-
最长公共子序列+最长递增子序列+最长递增公共子序列
//求最长公共子序列int dp[maxn][maxn];int a[maxn],b[maxn];int main(){ int m,n; scanf("%d %d",&m,&n); for(int i=1; i<=m; i++) scanf("%d",&a[i]); for(int i=1; i<=n; i++) scanf("原创 2017-04-11 09:42:20 · 967 阅读 · 0 评论 -
高斯消元学习总结
算法目的主要是用来求解线性方程组,根据方程组得出增广矩阵,对增广矩阵进行化简可得矩阵的秩,并可以根据秩的关系判断方程解的情况。算法主要思想1、线性代数中有关矩阵的化简(主要是初等行变换): 先根据矩阵初等行变换求解方程组 2x+y+z=16x+2y+z=−1−2x+2y+z=72x+y+z=1\\6x+2y+z=-1\\-2x+2y+z=7 先根据方程组表示出增广矩阵,化简 ⎡⎣⎢⎢26−2原创 2017-07-31 13:47:44 · 2305 阅读 · 0 评论 -
欧拉函数学习笔记整理 POJ 2407+POJ 1284+POJ 2478+POJ 3090
定义欧拉函数φ(x)代表1-x中与x互质的数的个数。基本相关性质1.设x=a1p1∗a2p2∗...∗anpnx=a1p1∗a2p2∗...∗anpnx={a1}^{p1}*{a2}^{p2}*...*{an}^{pn} 则φ(x)=x∗(1−1a1)∗(1−1a2)∗...∗(1−1an)x∗(1−1a1)∗(1−1a2)∗...∗(1−1an)x*(1-\frac{1}{a1...原创 2017-04-27 19:18:11 · 607 阅读 · 0 评论 -
Polya定理学习总结
Burnside引理设G是N={1,2,……,n}上的置换群,G在N上可引出不同的等价类,其中不同的等价类的个数为1|G|∑g∈G\frac{1}{|G|}\sum_{g∈G}c1(g),其中,c1(g)是置换g中不边缘的个数,即g中1阶循环的个数。理解后续补更……polya定理设G={a1,a2,a3,……,ag}是n个对象的置换群,用m种颜色给这n个对象染色,不同的着色方案为:1|G|{mc(a原创 2017-08-04 18:44:07 · 698 阅读 · 0 评论 -
LaTex数学公式语法
原文链接:http://lixingcong.github.io/2016/04/04/LaTex-intro/本文翻译自LaTex数学符号手册画表格示例 姓名 年龄 性别 aa bb cc AA BB CC操作符加减乘除 加 语法 减 语法 乘 语法 除 语法 + + - - ×\times \times转载 2017-08-18 16:11:22 · 5646 阅读 · 0 评论 -
HDU 5976 Detachment(逆元)+逆元总结
Description In a highly developed alien society, the habitats are almost infinitedimensional space. In the history of this planet,there is an old puzzle. You have a line segment with x units’ le...原创 2017-05-03 17:26:48 · 555 阅读 · 0 评论 -
扩展欧几里得学习总结
扩展欧几里得算法用来在已知整数a,b的情况下求解符合条件的x,y值,满足等式ax+by=gcd(a,b)。 且有对于整数 a,b, 必然存在整数对 x,y,满足ax+by=gcd(a,b)。有关公式的递归关系由欧几里得算法可知求解两个整数gcd的过程,即gcd(a,b)=gcd(b,a%b)。那么当辗转到最终状态时b=0,a=gcd,此时对于ax+by=gcd(a,b)对应着x=1,y=0,即a*原创 2017-08-02 19:38:57 · 410 阅读 · 0 评论 -
ACM中的浮点数精度处理
原文链接 在ACM中,精度问题非常常见。其中计算几何头疼的地方一般在于代码量大和精度问题,代码量问题只要平时注意积累模板一般就不成问题了。精度问题则不好说,有时候一个精度问题就可能成为一道题的瓶颈,让你debug半天都找不到错误出在哪。1.浮点数为啥会有精度问题:浮点数(以C/C++为准),一般用的较多的是float, double。 占字节数 数值范围转载 2018-01-24 16:02:37 · 253 阅读 · 0 评论