【CV系列】图像算法之十二:非局部均值滤波及其Matlab实现

本文介绍了非局部均值滤波算法,对比了它与传统均值滤波的区别,强调了非局部均值滤波在保边去噪上的优势。通过设置搜索框和相似框,计算每个点的权重值,进而保留图像边缘细节。同时,提供了Matlab实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

保边去噪算法之二:

首先谈一下什么是非局部均值滤波。在此之前,我们先来看一下均值滤波的原理。

1、均值滤波

均值滤波的计算非常简单,将图像像素点灰度记录在数组中,然后设置方框半径的值,然后将方框中的所有点的像素求和取平均,得到的结果就是均值滤波后对应像素点的灰度值。 
优点: 
计算很快而且简单 
算法可以看出,只是求了平均,并没有很复杂的计算 。
缺点: 
得到的图像很模糊 
当方框的半径越大,得到的图像中那些变化较大的地方(边缘)计算后变化就越小,即边缘不明显,即模糊。

2、非局部均值滤波

非局部均值滤波的基本原理与均值滤波类似,都是要取平均值,但是非局部均值滤波在计算中加入了每一个点的权重值,所以能够保证在相邻且相差很大的点在方框中求平均值时相互之间的影响减小,也就对图像边缘细节部分保留很多,这样图像看起来会更清晰。

非局部均值滤波的算法我认为可以大致分为以下几个步骤: 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的鲲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值