构建可信感知的投票推荐系统

如何构建可信感知的投票建议应用程序?

摘要

投票建议应用程序(VAAs)是一种智能系统,可根据选民的政治态度为其提供个性化的候选人/政党推荐。本文将探讨与系统设计改进相关的现有不足。本文提出了一种信任感知投票建议应用程序,旨在提高推荐准确性,从而促进选民决策过程,并增强公民在电子民主中的参与度。
该系统通过论坛渠道建立候选人与选民之间的沟通,与传统投票建议应用不同,该系统在计算中纳入候选人在论坛中的行为所形成的候选人声誉,进而计算选民与候选人之间政治画像的相似性。为测试所提出的原型,本文设计了评估框架并开展了用户研究。结果表明,可信感知的投票建议应用程序能够提供令人满意的准确且有帮助的推荐。此外,已评估构念之间的因果关系表明,用户通过参与论坛讨论,可以提高其推荐的准确性,从而进一步帮助其决策过程。

关键词 :投票建议应用 · Recommender系统 · 声誉 · Trust

1 引言

推荐系统已成为电子商务中的关键服务。通过根据估计的个人兴趣和偏好推荐可能感兴趣的项目,它们产生了显著的终端用户价值。在过去几年中,推荐系统成为一个重要的研究领域,提出了各种方法以提供更准确的推荐。大多数推荐系统使用一种或结合两种基本方法:协同过滤或基于内容的过滤[8]。许多研究人员提出了基本方法的扩展,旨在增加与系统的互动,并提供更丰富的用户体验[5–7,21]。他们声称可以为系统提供有关用户的附加信息,并可能带来更准确的推荐。例如,研究人员已经发现,整合了信任信息的推荐系统具有做出更准确预测的能力。此外,这类系统在抵御刷单攻击方面表现出更强的鲁棒性,因此相较于传统推荐系统是一种更优的选择[16]。

除了电子商务之外,在电子民主领域,一种名为投票建议应用(VAA)的新兴工具正引起研究人员以及使用该平台的公民的极大兴趣。基本上,投票建议应用是面向推荐系统的平台,可为选民提供与其政治态度相符的政治候选人/政党的推荐。近年来,这些应用程序在欧洲国家的选举期间被广泛使用[15]。

然而,与电子商务领域的推荐系统相比,电子民主领域中推荐系统的研究仍处于起步阶段,发展相对滞后。此外,专注于投票建议应用技术实现的研究人员较少[9,10,13,14],因为这些平台更多地受到政治学领域的关注。因此,本研究旨在通过应用电子商务推荐系统技术的现有进展,来填补投票建议应用在技术方法上的现有空白。特别是采用了信任感知推荐技术,以表明信任能够增加重要的终端用户价值,并提升政治推荐系统的准确性。为此,本文提议利用信任感知技术的特点,通过引入论坛渠道来扩展投票建议应用,建立候选人与选民之间的沟通渠道,并从中推断信任值,用于后续推荐结果的计算。

本文的其余部分组织如下:首先,第2节回顾了与投票建议应用设计方法、现有扩展、当前问题以及信任感知推荐系统优势相关的文献。接着,第3节重点介绍了所提出的信任感知投票建议应用程序的架构设计。原型的实现细节在第4节中进行了描述。随后,第5节描述了评估框架,并详细解释了用户研究设置。此外,还讨论了结果和发现的分析。最后,第6节给出了结论和对未来工作的展望。

2 文献综述

投票建议应用程序是在线工具,旨在帮助选民在政治竞选活动中选择政党或候选人。选民创建自己的政治画像,并通过使用不同的统计方法将其与提名候选人/政党的画像进行比较,系统据此决定(推荐)哪位候选人/政党的政治观点与选民的政治观点最为接近。

广泛使用的投票建议应用的一个例子是smartvote[25],该应用自2003年起在瑞士的选举过程中使用,由Politools开发¹。

选举开始前,会邀请候选人/政党回答所有问题。2007年smartvote问卷包含70个问题。所有问题分为两类:标准问题(与某一政治议题的赞成或反对相关的问题)和预算问题(用户对某一领域应花费多少资金的看法)。标准问题的可能答案为“是”、“比较是”、“比较不是”和“不是”,而预算问题的可能答案为“明显多花”、“多花”、“花同样的”、“少花”、“显著少花”。候选人或政党必须回答所有可用问题。之后,同一份smartvote问卷向选民开放。与候选人/政党不同,选民可以选择“豪华版”(完整版)或包含36个问题的“快速版”。此外,无论选择哪种问卷版本,选民都可以将任何问题留空不答。选民还可以表达某个问题的重要程度(“++”表示重要,“+”表示比较重要,“=”表示一般权重,“–”表示比较不重要,“–”表示不重要)。此外,对于某些问题会提供帮助,向选民提供更多关于问题主题的信息,包括利弊[13]。

投票建议应用对选民投票率的影响仍在讨论之中。一些研究者认为其具有积极影响[15],另一些人则认为是中性[12],而还有一些人持怀疑态度[11]。然而,他们都同意这类应用确实会影响投票率。如前所述,投票建议应用完全基于一系列用于选民与候选人之间匹配的陈述。这种方法存在多个问题。首先,仅靠画像相似度可能不足以保证高质量的预测和推荐。用于构建政治画像的陈述数量有限,且仅与当前选举相关,未考虑同行的总体政治立场。投票建议应用最大的挑战被认为是陈述配置。沃尔格雷夫等人[11]指出,根据陈述配置的不同,投票建议应用可能会偏袒某些政党/候选人,而忽视其他选项。此外,投票建议应用在利用选民社区方面非常有限,无法实现协同投票建议或选民之间的互动等高级功能。

为了克服这些 weaknesses,卡塔基斯等人[9]提出通过引入社交网络元素来扩展传统的投票建议应用。他们开发了一款社交投票建议应用,并在2012年希腊选举期间投入使用。该应用具有以下功能:协同过滤建议,即基于社区的推荐;好友功能,使用户能够与其他用户比较政治观点;以及博客,以支持发表评论并与研究团队互动。根据他们的研究结果,该应用为用户提供了超越基于议题推荐的额外推荐,凸显了在投票建议应用中引入基于社区方法的重要性。此外,他们的方法优于传统的选民‐候选人相似度指标,相对而言产生了更好的推荐结果。

从技术角度来看,投票建议应用中采用的推荐技术通常使用候选人与选民档案之间的距离度量,或协同过滤,某些应用中还使用基于模型的方法(模糊聚类)[18]。然而,上述技术存在局限性,因为数据仅能从政策议题声明中推断得出。文献中提出的在投票建议应用中引入社交元素的初步尝试[9],例如好友功能或博客,仅支持用户之间的互动,而这些功能产生的数据仍未被利用。然而,这些数据可以提升推荐计算的准确性。

从政治视角来看,投票建议应用的核心目标是促进公民的决策过程,并增强公民在电子民主中的参与。研究表明,可信度,即候选人的声誉,会影响选民的投票决定。在[19]中,阿兰戈内斯等人指出,选民预测“(a)声誉较差的候选人会实施其理想政策,而不顾任何承诺;(b)声誉较好的候选人会履行任何执行成本不高的承诺,也就是说,违背承诺所带来的收益小于其因违背承诺而导致的未来收益减少”。因此,选民更倾向于投票给声誉更好的候选人。

在电子商务推荐系统中,信任(通常与声誉相关)是一种能够提升系统准确性的属性。研究表明,信任值对推荐数量具有影响[3,4],有助于避免与不良参与者互动[5],缓解了传统系统所面临的数据稀疏性和冷启动等问题[2,3],能够防范刷单攻击,并且最重要的是对推荐准确性产生积极影响[16]。

然而,政治推荐系统并非如此,这种情况极为不利,因为信任在这些系统中具有极高的价值和重要性。此外,如果在投票建议应用中采用协同过滤方法[9],则存在发生刷单攻击的高风险。明确来说,刷单攻击是指恶意用户通过创建虚假账户,对目标项目设置高评分,使其与许多普通用户的个人资料相似[1],从而实现对目标项目的销售推广(推动攻击)或诋毁(核打击攻击)。同样,根据[14],当候选人被要求回答如[13]所述的政治问题时,他们可能会通过提供自认为最符合选民偏好的答案来操纵编码。

卡斯金娜等人[20]提出将电子商务推荐系统中使用的信任感知技术应用于投票建议应用的设计中。作者开发了一个框架,将用户之间的信任网络整合到VAA架构的推荐过程中。基于这项工作,本文描述的系统旨在实现一个信任感知投票建议应用程序组件,该组件使用从论坛渠道推断出的信任网络。在此项工作中,信任与声誉相关,被定义为“基于对某一代理人的信息或其过去行为的了解而对其行为产生的预期”。该定义由阿卜杜勒‐拉赫曼和黑尔斯[23]提出,最接近于表示在线候选人在平台中的声誉。此外,声誉与信任密切相关。在推荐系统中,信任和声誉具有相同的目的:为特定用户提侈权重分数,以衡量其可靠性水平。在[24]声誉也被视为一种“可信度的集体度量”,该度量基于某一社区成员的评分。二者的区别在于参与评分的用户数量:信任反映的是单个用户的意见,而声誉则是基于整个社区的意见。所提出的投票建议应用设计基于平台上参与的候选人和选民整个社区的意见。下一节将详细描述信任感知投票建议应用程序的架构。

3 信任感知投票建议应用程序架构

改编自[20] VAA架构(图1)包含三个灰盒,代表系统的主要计算模块:全局信任度量用于计算候选人基于社区的声誉;基于议题的相似性度量测量候选人与选民政治画像之间的欧几里得距离;推荐引擎收集两个度量的计算结果,并生成最终推荐结果。每个计算模块将在下文详细讨论。

示意图0

  • 全局信任度量 。该模块以信任网络矩阵作为输入。根据[21],信任网络是一个单一的加权有向图,表示整个社区的所有信任声明。这些信任声明是通过使用论坛时的候选人对社区(候选人在论坛上的发帖)和社区对候选人(投票、被选中的回答等)互动推断得出的。因此,采用一种全局信任度量[22]来预测用户的全局信任(即整个社区对他的看法),并用于计算候选人与选民之间的信任值。由全局信任度量预测的估计信任得分基于用户在论坛渠道内政治讨论中的用户活动。事实上,每次论坛活动都会为候选人赋予一定数量的点数,称为声誉点数。我们将声誉点数视为一种信任度量,原因如下:首先,选民并不局限于奖励那些符合自己观点的回答;他们不限于单一具体议题,而是可以观察候选人在论坛内的整个“竞选”过程。因此,选民能够总体了解候选人的意图,并支持那些发布内容一致、最有前景且最务实的帖子的候选人,即使这些内容不一定完全符合自己的信念。此外,论坛渠道被视为一种信息来源,选民据此形成他们的态度。声誉点数的分配方式以及声誉计算的详细算法将在原型第4.1节中描述。

  • 基于议题的相似性度量 。此模块是投票建议应用架构的核心部分。通过收集选民和候选人的政策‐投票声明,构建双方的政治画像,如第2节所述。随后,采用在smartvote应用中使用的基于议题的相似性度量方法,计算候选人与选民档案之间的相似性。该相似性度量的计算本身基于加权欧几里得距离,其详细描述见原型第4.2节。

  • 推荐引擎 。在获得信任度量和相似性度量的结果后,推荐引擎计算选民与每位候选人之间的最终匹配得分。为了确定信任得分和基于议题的匹配得分在推荐计算中的比例,研究对8006名smartvote用户进行了调查。该调查包含三个问题,用于判断:(1)用户是否欢迎论坛功能;(2)用户的基于议题相似性的投票决定是否受其朋友(局部信任度量)影响;(3)用户的基于议题相似性的投票决定是否受社区(全局信任度量)影响。根据调查分析结果,系统以60:40比例结合基于议题的得分和全局信任(声誉)得分,其中60%倾向于基于议题的相似性度量,40%倾向于信任度量。

4 原型实现

信任感知投票建议应用程序原型通过实现以下描述的附加模块,扩展了传统的投票建议应用:

  • Forum channel – 一个允许选民与候选人互动的板块。论坛渠道的目标是为候选人提供宣传其理念和捍卫其态度的机会,同时选民可以从便捷的信息获取、意见交流以及与候选人互动的机会中受益。

  • Vote advice – 一个通过问卷子板块创建候选人和选民政治画像的板块,并利用从论坛及选民/候选人政治画像中收集的数据生成并展示最终推荐。

4.1 论坛渠道

论坛是选民和候选人可以提问、回答问题、发表评论以及对他人帖子进行投票的渠道。以这种方式构建选民与候选人之间的互动,其灵感来源于 Stack Exchange 平台²,一个包含多个问答社区的网络,其中包括面向对政治感兴趣人士的社区(政治 Stack Exchange)。选民参与论坛讨论时无需注册。在提问时,需要提供标题、内容,并将问题归类到可用的类别之一。提出问题的选民可以选择最佳答案,并为给出该答案的候选人奖励声誉点数。本质上,候选人参与越多,就越能展示自己及其政治意图的额外信息,从而获得更多的点数。此外,如果候选人的回答被选民点赞,则会获得额外的点数(若被点踩则扣除点数)。候选人提供的优质答案越多,其声誉就越好。此外,管理员可以设置发帖、回答、评论、投票等操作的速率限制(每 IP/每小时),以此防止声誉垃圾信息。总点数反映了用户的声誉。声誉点数既为候选人计算,也为选民计算。然而,选民的声誉点数不会影响推荐结果的计算。

4.2 投票建议

投票建议部分由两部分组成:问卷和投票建议。如第3节所述,问卷包含一系列与政策议题相关的问题类别,需要选民和候选人回答。投票建议执行候选人的推荐计算,包括计算选民与候选人之间的基于议题的相似性,并将候选人声誉整合到计算中。

投票建议部分基本上是包含基于议题的相似性和全局信任(声誉)度量的推荐过程计算(第3节)。基于议题的相似性度量基于欧几里得距离的计算。在计算出欧几里得距离后(公式1),使用最大可能距离的值对该值进行归一化(公式2),并转换为百分比(公式3)。

$$
\text{dist} w(v, c) = \sqrt{\sum {i=1}^{n}(w_{vi} \cdot (v_i - c_i))^2} \quad (1)
$$

$$
\text{maxdist} w(v) = \sqrt{\sum {i=1}^{n}(w_{vi} \cdot 100)^2} \quad (2)
$$

$$
\text{match}(v, c) = 100 - \frac{\text{dist}(v, c)}{\text{maxdist}(v)} \quad (3)
$$

相应地,信任值通过全局信任度量进行计算。全局信任度量会计算反映候选人在论坛中行为的声誉点数。每位候选人的声誉点数除以最佳候选人的声誉点数,并转换为百分比,从而得到每位候选人0到100之间的信任得分。在获得选民与每位候选人的匹配得分后,系统将其与信任得分按60:40比例结合。最后,显示所有候选人的列表及其推荐分数,并按推荐分数从高到低排序。

5 系统评估

为了评估所构建的原型,我们建立了一个评估框架,以对信任感知投票建议应用程序进行初步的用户研究。该评估框架分为两部分:系统的用户研究和参与者的评估调查。

5.1 用户研究设置

用户研究在塞尔维亚尼什大学的20名学生中进行,这些学生来自不同的学科领域:计算机科学、医学、法律和哲学。研究设置了尼什大学学生议会成员的选举。用于创建选民和候选人政治画像的问题(陈述)基于学生议会的目标和宗旨。招募了4名参与者(1名男性,3名女性)作为候选人,16名参与者(7名男性,9名女性)作为选民。其中仅有4名选民过去曾使用过投票建议应用。实验开始前,所有参与者均被告知学生议会成员的角色和职责。此外,候选人和选民被分配了不同的任务。

在平台向选民开放之前,候选人被要求:(a)创建个人资料;(b)回答系统问卷部分的所有问题,这些问题用于生成他们的政治画像;(c)发布一篇介绍性帖子,建议以一个可讨论的问题形式提出,以引发讨论并推广自己的理念;(d)在三周的时间内参与论坛中的讨论。候选人的主要目标是尽可能多地获得声誉点数。

在所有候选人资料创建完成后,要求选民进行以下操作:(a)创建个人资料;(b)在与候选人相同的时间段内参与论坛讨论;(c)至少回答一个问题(最好更多)在问卷部分;(d)研究推荐候选人名单及其得分;(e)在开始回答评估调查之前,根据其政治偏好评估候选人列表的排序;(f)回答调查。

所有参与者都已经熟悉或了解这些候选人。声誉点数最高的候选人获得了2500第纳尔(25瑞士法郎)的奖励,最活跃的10名用户每人获得了1000第纳尔(10瑞士法郎)。

5.2 调查设置

为了构建调查,采用了 ResQue 评估框架[17]。ResQue 框架基于决策理论和信任问题。它试图从用户的角度探讨评估问题,并且是合适的,因为它包含了准确性度量模型、努力度量模型以及信任模型。

评估调查包含13个与用户背景信息相关的问题和23个与ResQue框架相关的问题。所有简化的ResQue模型中的相关问题均被包含在内,同时还有与本研究最相关的标准相关的完整模型问题(见表1)。

5.3 结果讨论

已对16名用户的回答进行了质量检查。我们寻找了给出矛盾答案或对所有问题给出相同答案的用户。遗憾的是,在本就有限的样本中,发现有一名用户对所有问题给出了相同的答案,该用户已被检测出并从后续分析中剔除。已评估的构念见表1,结果在下文中详细描述。

  • 推荐项目的质量 指衡量系统预测用户意见成功的程度。分析了根据[6]影响用户使用意愿的系统推荐项目的质量:
  • 感知准确性 。结果表明,用户认为该系统在推荐方面具有较高的感知准确性。66.7%的参与者表示,推荐系统为他们提供了(相当)好的推荐,且所推荐的候选人与其自身政治观点(相当)相似。
  • 相对准确性 通过一个正面问题和一个负面问题进行评估。该系统提供的推荐准确性似乎与用户可能从朋友那里获得的推荐的准确性成正比。

  • 感知易用性 。如前所述,投票建议应用的主要目标是促进选民的决策。因此,决策难易度被视为此次评估中极为重要的标准。

  • 决策的容易程度 。结果表明,用户认为系统有助于他们的决策。尽管他们使用论坛已有3周时间,但他们并不认为该系统耗时过多。
标准 已评估构念 项目 平均用户响应
推荐项的质量 感知的准确性 推荐给我的候选人具有相似性政治态度如我 3.73
推荐项的质量 感知的准确性 推荐系统给了我很好的建议。 3.73
推荐项的质量 感知的准确性(反向量表) 我的政治态度与这些态度相悖向我推荐的候选人。 3.2
感知的决策的容易程度 相对的准确性 我收到的推荐更符合我的兴趣,而不是我可能从朋友那里得到的兴趣。 3.2
感知的决策的容易程度 相对的准确性(反向量表) 朋友的推荐更适合我兴趣,而不是来自此系统。 3.0
感知的决策的容易程度 决策的容易程度 使用推荐系统来寻找合适的候选人很容易。 3.15
感知的决策的容易程度 决策的容易程度 我能够很快地利用该推荐系统快速上手。 3.46
感知的决策的容易程度 决策的容易程度 我很快就能够熟练使用该推荐系统。 3.38
感知的决策的容易程度 决策的容易程度 在帮助下找到要投票的候选人推荐系统很简单。 3.76
感知的决策的容易程度 决策的容易程度 找到要投票的候选人,即使有推荐系统提供的帮助消耗了太多 time 2.92
感知的有用性 推荐的项目有效地帮助我找到理想候选人 3.42
感知的有用性 推荐影响了我的投票决定。 2.85
感知的有用性 我在帮助下感到支持,能够找到我喜欢的东西推荐系统 3.21
态度 总体满意度 总体 ,我对推荐系统感到满意。 3.69
态度 信心与信任 我相信我会喜欢这些候选人推荐给我。 3.21
态度 信心与信任 推荐系统让我对结果更有信心我的选择/决定 3.5
态度 信心与信任 推荐系统可以被信任 3.28
行为意愿 使用意愿系统 如果存在这样一个推荐系统 ,我将使用它来决定投票给谁。 3.23
行为意愿 推荐朋友 如果存在这样的推荐系统,我会告诉我的朋友关于它 3.84
  • 感知有用性 定义为“用户认为使用推荐系统相较于没有推荐系统帮助时,能够提升其表现的程度”[6]。结果表明,用户认为该系统相当有帮助。然而,该推荐系统似乎并未对用户的投票决定产生影响。鉴于投票建议应用并非旨在影响用户的投票决定,因此这不被视为该原型的局限性。

  • 态度 指的是用户对推荐系统的总体看法。通常情况下,用户对所提出系统的態度相当积极。60%的参与者对系统(相当)满意,40%的参与者(相当)有信心他们会喜欢系统的推荐,53.3%的参与者在使用推荐系统后对自己的决策更有信心,而40%的参与者(相当)同意推荐系统是可信的。

  • 行为意图 对于促进用户在未来访问和参与系统具有重要意义。在本研究中,行为意图通过两个问题进行评估。其中一个问题是评估用户再次使用该系统的意愿,另一个问题是评估用户向其朋友推荐该系统的意愿。结果表明,用户有较大可能在未来继续使用该系统。此外,66.7%的参与者愿意将该系统推荐给他们的朋友。向他人推荐该系统的意愿是增强公民在电子民主中参与的重要因素。

  • 已评估构念之间的因果关系 。为了更深入地理解候选人论坛参与度对推荐准确率的影响,以及系统不同属性之间的相互关系,本节展示了所测量构念之间的相关性分析结果。图2显示了评估构念之间的相关系数及其决定系数。只有当 R² > 0.1 时,才认为相关构念具有足够的适当性和信息量,可用于检验与其关联路径的显著性[17]。

为了确定论坛参与是否会影响推荐准确性,针对每位用户计算了一个反映其参与强度的值。该值基于用户提出的问题、回答以及投票的数量。由于信任感知方法旨在通过允许用户互动并评估候选人的总体可信度(声誉)来提高推荐准确性,因此论坛参与与感知准确性之间的关系至关重要。相关系数显示,论坛参与与感知准确性之间存在轻微相关性(r = 0.41,p = 0.126)。因此,用户参与越多,生成的推荐将越准确。此外,根据用户信念,用户的感知准确性与决策难易度呈正相关(r = 0.62,p = 0.02)。考虑到用户可能通过参与论坛来提升感知准确性,可以得出结论:参与也会影响决策难易度,因为二者是相关的。因此,第一个结论是通过建立候选人与选民之间经由论坛渠道的沟通,推荐的感知准确性将得到提升,从而促进选民的决策过程。

感知准确性也与感知有用性高度相关(r = 0.78,p = 0.005),并对信心和信任(r = 0.63,p = 0.082)以及总体满意度(r = 0.53,p = 0.056)表现出显著影响。最后,总体满意度似乎与用户向朋友推荐该系统的意愿显著相关(r = 0.48,p = 0.09)。如前所述,这种行为意愿非常重要,因为 VAA 系统的目标之一就是增强公民参与此类系统的程度。因此,第二个结论指出,通过提高感知准确性,投票建议应用有潜力吸引更多公民参与该系统。

示意图1

总体而言,所提出的信任感知投票建议应用程序设计方法不仅有助于提高生成推荐的准确性,还有助于促进选民决策过程,并增强公民在该平台内的参与度。上述结论促使将论坛渠道纳入投票建议应用的设计中,从而实现候选人与选民之间的沟通,并从中推断信任值,进而用于推荐计算。

6 结论

投票建议应用作为一类推荐系统,面临着推荐准确性以及隐私问题的挑战。此外,刷单攻击的风险可能危及公民参与。为应对这些问题,在投票建议应用设计中引入了在电子商务领域广泛应用的信任感知技术。我们开发了一个原型,该原型除了采用传统的选民与候选人之间的基于议题的相似性度量外,还整合了候选人通过其论坛活动所获得的在线声誉。该原型旨在提高推荐的准确性,从而促进公民的决策过程和参与。在实现该原型后,开展了一项初步的用户研究和评估调查,初步揭示了社交元素(论坛渠道)和信任值对投票建议应用整体成功的影响。

评估框架基于推荐系统中使用的以用户为中心的方法,能够评估成功推荐的多个标准。已进行了两部分评估:用户研究设置和调查分析。随后的用户研究及调查评估结果表明,信任感知投票建议应用程序生成的推荐受到用户的积极评价。这些推荐被认为在决策过程中足够准确、有用,并有助于提高用户在系统中的参与度。此外,还构建了一个因果关系模型,并得出了对投票建议应用成功有用的结论。

然而,我们也认识到本研究存在一些局限性,这些局限性被视为未来工作的方向。本研究的主要局限在于用户样本。首先,我们的用户样本数量非常有限,这意味着研究结果的统计显著性较低。另一个局限是问卷陈述配置。尽管用于候选人与选民之间档案匹配的陈述与我们用户研究中涉及的选举相关,但陈述配置通常需要更深入和详细的研究,超出了本工作的范围。未来的工作将包括使用更多参与者重复用户研究设置,以及扩展评估框架和分析方法。

【源码免费下载链接】:https://renmaiwang.cn/s/xp9np 该架构旨在提供安全可靠的工业数据交换方案,特别适用于自动化与物联网(IoT)领域中的设备互联需求。在本压缩包“opc ua server.rar”中,提供了一个基于Open62541开源C++库的OPC UA服务器代码示例。该库为开发者提供了完整的OPC UA服务实现接口,支持多种操作系统环境,包括Windows、Linux和嵌入式系统,并且完全开源以供自由使用与修改。通过实践操作,用户可以深入了解如何构建符合Opc ua标准的应用程序。 在OPC UA架构中,“绑定事件处理机制”是实现服务功能的核心概念之一。该机制允许客户端动态注册回调函数,用于处理服务器与设备之间的各种通信事件,包括但不限于新订阅请求、数据更新通知以及断开连接指令等。这种设计模式显著简化了服务器端的监听逻辑,并且能够高效响应客户端的各种操作需求。 在代码示例中,OPC UA服务器主要包括以下几大功能模块:1. **服务初始化**:配置服务器运行所需的必要参数和设置;2. **节点管理**:创建并维护与设备交互的OPC UA节点实例;3. **数据绑定**:实现对实时数据源的有效采集与同步;4. **事件处理机制**:注册回调函数以响应客户端的各种操作指令;5. **安全配置**:设置认证和加密策略,确保通信安全性;6. **发布/订阅模型**:实现双向的数据交互功能。通过这些模块的协同工作,服务器能够支持多种设备类型之间的数据共享与协作。 为了帮助开发者更好地理解Opc ua架构的工作原理,代码示例中详细阐述了各组件的具体实现细节,并提供了完整的开发步骤指导。此外,该案例还深入分析了OPC UA协议在工业4.0背景下的应用价值,包括多设备互联、数据实时传输等关键特性。 通过实践操作,用户可以掌握基于Open62541库的O
<think>好的,我现在要处理用户关于智能网联汽车LKA系统中利用车辆自身振动作为评价指标来优化车道线感知的问题。首先,我需要理解用户的问题核心。用户希望将车辆振动数据纳入评价指标,用于提升车道线感知的准确性。接下来,我需要结合已有的知识和提供的引用内容,来构建一个合理的回答。 首先,回顾LKA系统的基本原理。LKA(车道保持辅助系统)主要依赖摄像头、雷达等传感器来检测车道线,并通过控制系统调整车辆方向。然而,车辆振动可能会影响摄像头的图像质量,导致感知误差。例如,振动可能导致图像模糊或抖动,影响车道线识别。这时候,引入振动数据作为评价指标,可以实时监测振动对感知的影响,从而进行补偿或调整。 接下来,我需要考虑如何将振动数据整合到评价指标中。可能的方面包括振动频率、振幅、方向等。这些指标需要量化振动对摄像头的影响,比如高频振动可能导致图像模糊,而低频振动可能引起缓慢偏移。此外,振动可能来自路面不平、发动机运转或车辆部件松动,这些不同的来源可能需要不同的处理策略。 然后,我需要思考优化方法。可能的步骤包括数据融合,将振动传感器(如加速度计)的数据与摄像头数据结合,使用卡尔曼滤波或机器学习模型来校正车道线检测。动态阈值调整也是一个方向,根据振动强度调整车道线识别的置信度阈值,在振动大时采用更保守的策略,确保系统安全。此外,硬件协同优化,比如在振动强烈时触发主动悬架系统来稳定车身,减少振动传递到摄像头。 安全冗余方面,引用[1]提到多传感器融合的重要性。类似地,在振动影响下,可以增加红外传感器或激光雷达作为冗余,确保在摄像头失效时其他传感器能够接管。引用[2]中提到的自动泊车系统复用传感器资源,可能也适用于LKA系统,利用现有传感器的数据来辅助振动补偿。 用户可能的需求延伸包括振动数据的实时处理能力、不同振动源的影响差异,以及如何验证优化效果。因此,相关问题需要覆盖这些方面,比如振动数据采集方法、不同场景下的优化策略、测试验证方法,以及与现有冗余系统的结合。 最后,确保回答结构清晰,分点说明评价指标、优化方法、实施步骤,并生成相关问题。同时,正确引用提供的资料,特别是关于多传感器融合和自动泊车系统的内容,以增强回答的可信度。</think>### 智能网联汽车LKA系统中基于车辆振动的车道线感知优化方案 #### 1. **车辆振动与车道线感知的关联性分析** 在LKA(车道保持辅助系统)中,车辆振动可能通过以下途径影响车道线感知精度: - **传感器干扰**:摄像头或雷达因车身振动导致图像模糊或点云抖动,例如高频振动可能使车道线检测算法误判边缘位置[^1] - **姿态偏移**:振动引起的车身横摆角/俯仰角变化可能导致视觉坐标系偏移,需通过$Δθ = \int \omega dt + \frac{1}{2}αt^2$进行运动补偿 - **数据时序失准**:振动环境下的传感器数据时序对齐误差会影响多模态融合效果 #### 2. **振动评价指标构建** 建议分层设计指标体系: $$ \begin{cases} I_{vib} = k_1 \cdot f_{dominant} + k_2 \cdot A_{rms} \\ f_{dominant}: \text{主频分量(Hz)} \\ A_{rms}: \text{振动加速度有效值(m/s²)} \end{cases} $$ - **频域指标**:划分0-5Hz(悬架振动)、5-20Hz(动力总成振动)、>20Hz(路面激励) - **时域指标**:采用峭度系数$K = \frac{E[(X-μ)^4]}{σ^4}$识别冲击型振动 - **空间相关性**:建立振动传递函数$H(s)=\frac{Y(s)}{X(s)}$分析摄像头安装位置的振动特性 #### 3. **融合振动指标的感知优化方法** **硬件层**: - 在摄像头模组加装MEMS加速度计,采样率≥1kHz - 采用主动减震支架,根据振动频谱调节阻尼系数 **算法层**: ```python def vibration_aware_detection(frame, vib_data): # 振动补偿模块 motion_vector = kalman_filter(vib_data) stabilized_frame = warpAffine(frame, motion_vector) # 置信度动态调整 if vib_data.rms > threshold: confidence *= (1 - sigmoid(vib_data.rms)) return lane_detection(stabilized_frame, confidence) ``` **系统层**: - 建立振动-感知误差映射表,当$I_{vib}>3$时启动多传感器投票机制 - 结合高精度定位数据构建振动环境下的车道线概率模型 #### 4. **实施验证建议** - **台架测试**:在六自由度振动台上复现典型工况谱,验证算法鲁棒性 - **实车标定**:收集振动强度与车道线偏移量的统计关系,例如: $$ \Delta_{lane} = 0.03 \cdot A_{rms} + 0.1 \cdot f_{dominant} $$ - **功能安全**:符合ISO 26262要求,当持续振动超限时触发降级策略
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值