- 博客(214)
- 收藏
- 关注
原创 端到端推荐大模型OneSug颠覆电商查询推荐!端到端生成式框架降延迟43%,长尾场景突破传统瓶颈
快手推出的端到端生成式推荐框架OneSug,突破了电商查询推荐领域传统多阶段架构(MCA)效率低、长尾覆盖差的瓶颈。该框架通过三大核心技术:Prefix2Query表征增强(PRE)解决短前缀语义歧义问题,编码-解码架构实现端到端生成,以及奖励加权排序(RWR)精准对齐用户偏好。实验显示,OneSug在离线指标HitRate和MRR上较传统方案提升超8%,线上AB测试实现CTR、下单量和营收全面增长,尤其长尾场景表现突出。其创新性在于将"多阶段割裂流程"整合为语义驱动的智能生成,
2025-08-29 18:23:34
519
原创 深度拆解判别式推荐大模型RankGPT!生成式精排落地提速94.8%,冷启动效果飙升,还解决了传统推荐3大痛点
本文深度拆解小红书提出的生成式精排模型RankGPT,揭示了其在落地实践中的关键突破。研究发现,生成式精排的核心优势来自自回归交互方式而非样本组织形式,传统推荐模块(如SIM、PPNet)仍可复用,但多模态特征效果翻倍。RankGPT通过合并Item-Action Token和线性复杂度位置编码,实现了94.8%的训练加速和0.06%的AUC提升,线上实验显示其尤其擅长冷启动内容推荐。该研究为生成式推荐从理论到落地提供了重要实践路径,显著降低了工业部署成本。
2025-08-29 18:17:53
503
原创 大模型推荐系统新标杆!EGA-V2端到端大模型驱动推荐系统
美团EGA-V2提出端到端生成式广告框架,通过单个模型打通广告全流程,实现"广告序列+创意+位置+计费"端到端输出。该方案采用双token捕捉用户与视觉偏好、置换感知奖励模型、拍卖偏好对齐和多阶段训练等创新设计,解决了传统级联架构的三大痛点:全局最优难实现、业务约束难整合和生成式技术"水土不服"。实验表明,EGA-V2在平台收入、点击率和激励兼容性等指标上均显著优于传统架构,为生成式技术在广告领域的应用树立了新标杆。该研究不仅重构了广告系统设计逻辑,更实现了用户、平台
2025-08-28 18:38:46
895
原创 谷歌RecLLM,大模型赋能对话推荐算法系统
谷歌推出基于大语言模型LaMDA的端到端对话推荐系统RecLLM,通过对话管理、召回、排序、用户画像等模块协同工作,实现个性化推荐。系统采用四种召回策略解决冷启动问题,利用大模型生成可解释的推荐理由提升用户体验。用户模拟器生成训练数据优化模型性能,使推荐效果显著提升。该技术可应用于电商、视频平台等场景,标志着推荐系统进入智能化交互新时代,为AI领域发展带来新机遇。
2025-08-28 18:33:20
532
原创 OneRec引爆推荐圈!端到端大模型颠覆“召回-排序”,解密推荐系统大模型演进终极方向
推荐系统迎来范式革命:以快手OneRec为代表的端到端推荐大模型,用单个生成式模型取代传统级联架构,实现成本降90%、用户时长显著提升。OneRec通过"编码器-解码器+MoE"架构、NTP预训练+RL后训练范式、以及算力利用率提升50倍等创新,指明了"生成式+RL对齐"的未来方向。文章剖析了推荐大模型从"模仿结构"到"对齐范式"的五阶段演进历程,指出OneRec的三大突破点:架构革新、训练范式优化和效率革命。同时提出未来三大方
2025-08-27 18:03:04
710
原创 谷歌TIGER爆火!生成式召回颠覆推荐系统:用语义ID破解冷启动+多样性难题,3大数据集性能碾压传统模型
谷歌TIGER模型通过"语义ID+生成式召回"机制革新推荐系统,在三大数据集上性能显著超越传统模型。其核心创新包括:1)利用RQ-VAE生成层次化语义ID,实现知识共享;2)采用Transformer直接生成物品ID,省去ANN搜索环节。该方案有效解决冷启动(新物品Recall@5提升15%-20%)和推荐多样性(温度采样使Entropy@10提升40%)难题,存储成本仅为传统方法的1/10。实验显示,在Beauty数据集上NDCG@5比SASRec提升29%,为电商、内容平台等场景提供
2025-08-27 17:56:01
609
原创 基于大模型的对话式推荐系统技术架构设计--用户交互层
本文节选自《GPT多模态大模型与AI Agent智能体》一书,探讨了从传统推荐系统到基于大模型的对话式推荐系统(CRS)的技术演进。传统推荐系统主要依赖协同过滤、基于内容和混合推荐等方法,而基于大模型的CRS通过多轮对话、自然语言理解、深度语义分析等能力,实现了更智能、个性化和互动的推荐体验。文章重点分析了CRS的技术架构设计,特别是用户交互层的六大关键要素:聊天界面、语音交互、反馈收集、多平台适配、多模态展示和个性化设置。这些设计共同提升了系统的可用性和用户体验,使推荐系统能够更精准地理解和满足用户需求。
2025-08-26 18:38:14
750
原创 基于大模型的对话式推荐系统技术架构设计--对话管理层
本文节选自陈敬雷的《GPT多模态大模型与AI Agent智能体》,重点探讨了基于大模型的对话式推荐系统(CRS)的技术架构设计。文章首先对比了传统推荐系统(如协同过滤、内容推荐)与基于大模型的CRS的差异,强调后者在多轮对话、自然语言理解、个性化推荐等方面的优势。随后详细介绍了CRS的核心组件——对话管理层的六大关键功能:对话状态跟踪、策略管理、意图识别、敏感词过滤、上下文管理和效果分析,这些功能结合大模型的能力,显著提升了推荐系统的交互性和智能化水平。文章为读者理解大模型在推荐系统中的应用提供了技术框架和
2025-08-26 18:24:20
863
原创 基于大模型的对话式推荐系统技术架构设计--推荐引擎层
本文节选自《GPT多模态大模型与AI Agent智能体》一书,探讨了从传统推荐系统到基于大模型的对话式推荐系统(CRS)的技术演进。传统推荐系统主要依赖协同过滤、基于内容的推荐等方法,而对话式推荐系统通过大模型实现了多轮对话、深度语义理解、情感智能等创新功能。文章重点介绍了基于大模型的对话式推荐系统技术架构,特别是推荐引擎层的设计,包括离线推荐算法(如深度因子分解机、协同过滤等)和准实时推荐算法(如用户行为数据流处理、策略融合等)。这些技术结合大模型的强大能力,显著提升了推荐系统的智能化、个性化和交互性,为
2025-08-25 18:23:55
2252
原创 基于大模型的对话式推荐系统技术架构设计--大模型管理层
本文介绍了基于大模型的对话式推荐系统(CRS)的技术架构设计,重点探讨了从传统推荐系统到智能化、互动化CRS的演进。传统推荐系统主要依赖协同过滤、基于内容的推荐等方法,但存在冷启动、稀疏性等局限性。基于大模型的CRS则通过多轮对话、自然语言理解、深度语义分析等能力,实现更个性化、动态化的推荐体验。文章详细阐述了CRS的技术架构,包括大模型管理层(如推荐AI智能体管理、RAG检索增强生成、训练微调推理等核心模块),强调了大模型在任务规划、意图识别、多模态融合等方面的优势。这种系统能更精准理解用户需求,提供可解
2025-08-25 18:20:11
627
原创 基于大模型的对话式推荐系统技术架构设计--大模型底座层
本文探讨了从传统推荐系统到基于大模型的对话式推荐系统(CRS)的技术演进。传统推荐系统主要依赖协同过滤、基于内容和混合推荐等方法,而基于大模型的CRS通过多轮对话、自然语言理解、深度语义理解等12项特性显著提升了用户体验。文章重点介绍了CRS的技术架构设计,特别是大模型底座层(包括通用大模型和推荐微调大模型)如何为系统提供语言理解、个性化推荐和跨领域知识整合等核心能力。这种架构使CRS能够实现更智能、个性化和互动化的推荐服务,代表了推荐技术的最新发展方向。(149字)
2025-08-24 20:29:13
916
原创 基于大模型的对话式推荐系统技术架构设计-- 大数据平台层
本文探讨了基于大模型的对话式推荐系统(CRS)的技术架构设计,重点介绍了大数据平台层的关键组件。相较于传统推荐系统(协同过滤、内容推荐等),CRS利用大模型实现了多轮对话、深度语义理解、情感智能等优势,提供更个性化和互动的推荐体验。文章详细分析了10种数据库技术(如Neo4j、HBase、Milvus等)在CRS中的作用,分别支撑图关系存储、实时数据处理、向量搜索等核心功能,共同构建高效的数据处理基础设施。该架构通过整合多模态数据和知识增强,显著提升了推荐系统的智能化水平。
2025-08-24 20:26:55
1028
原创 基于大模型的对话式推荐系统技术架构设计
本文节选自陈敬雷新书《GPT多模态大模型与AI Agent智能体》,探讨了从传统推荐系统到基于大模型的对话式推荐系统(CRS)的技术演进。传统推荐系统主要依赖协同过滤、内容推荐等方法,存在冷启动和稀疏性问题。而基于大模型的CRS通过多轮对话、深度语义理解、情感智能等12大特性,实现了更智能、个性化的交互体验。文章还展示了CRS的技术架构图(如图8-1),并预告后续将详解各层架构原理。本书及配套视频适合AI领域学习者和研究者,提供了理论知识与实践案例。
2025-08-23 22:36:51
1045
原创 国产AI双爆!DeepSeek-V3.1掀“思考+效率”革命,科创AI ETF单日吸金3600万,4大逻辑拆穿“能不能上车”真相
国产AI迎来技术与资本双突破:DeepSeek-V3.1大模型通过混合推理架构和国产芯片适配实现技术飞跃,推动国产AI从跟跑迈入并跑阶段;科创AI ETF单日吸金3600万元,反映市场对国产AI产业链的认可。该模型在金融、医疗等领域已实现商业化落地,带动上下游协同发展。资本市场看好国产AI的长期潜力、政策红利和国产替代机遇,科创AI ETF成为布局这一赛道的重要工具。随着技术突破和产业协同加速,国产AI正进入黄金发展期。
2025-08-23 20:38:06
1143
原创 一文吃透PPO/DPO/GRPO强化学习!DeepSeek-R1核心强化学习算法,从原理类比到落地场景全指南
摘要 本文深入解析了PPO、DPO、GRPO三大强化学习算法在AI大模型对齐中的应用。PPO通过Clip机制和价值网络实现稳定优化,适合复杂任务但计算成本高;DPO直接利用人类偏好数据简化流程,高效但对数据质量敏感;GRPO采用组内对比降低显存占用,适合资源受限场景。文章通过类比(如健身训练、作文批改)阐释算法原理,并对比其优缺点与应用场景(如对话对齐、数学推理),为强化学习实践提供清晰指南。
2025-08-22 18:17:25
656
原创 PPO 算法展现更强潜力!清华联合团队提出 Open-Reasoner-Zero,以极简 RL 方案超越 DeepSeek-R1大模型 推理性能,训练效率提升 30 倍且全开源
清华大学与阶跃星辰联合团队提出Open-Reasoner-Zero,仅用普通PPO算法和极简奖励函数,在推理性能上超越DeepSeek-R1大模型,训练效率提升30倍。该研究打破“复杂算法是推理模型训练必要条件”的固有认知,直接使用未对齐基座模型,通过高质量数据和优化参数设计,实现低成本高效训练。实验表明,模型不仅推理能力更强,还展现出“阶跃式”能力涌现和优秀的反思泛化性能。全开源策略为行业提供了高效推理模型训练的新路径。
2025-08-22 18:09:03
917
原创 零代码小白狂喜!用Coze+DeepSeek大模型搭智能客服,1小时搞定全流程
《零代码搭建智能客服:Coze+DeepSeek大模型实战》摘要 本文介绍了基于Coze平台和DeepSeek大模型的零代码智能客服搭建方案,专为企业、高校等机构设计。该方案具有三大优势:无编程门槛、无需本地部署、场景可迁移。通过三个核心步骤实现:1)创建知识库,导入专属内容;2)设计工作流,实现意图识别与智能回答的逻辑;3)创建智能体,提供对话界面。1小时即可完成专属客服搭建,支持中文语境精准问答,并能灵活适配其他应用场景。该方案特别适合不具备技术背景的用户快速构建定制化智能客服系
2025-08-21 18:21:33
900
原创 小白1小时搞定本地大模型!Ollama+DeepSeek+Dify全流程攻略:零代码搭私有AI
摘要:本文介绍了零代码本地部署大模型的完整流程,使用Ollama+DeepSeek+Dify组合方案,解决数据隐私、离线使用和成本控制三大痛点。教程详细拆解了Ollama环境安装(含路径优化)、DeepSeek模型部署(支持低配设备)、Dify可视化平台接入等关键步骤,并提供了Chatbox备选方案。特别总结了5个高频避坑点,如模型路径修改后需重启、名称需严格匹配等。最后指出该方案可应用于私域知识库构建等场景,为AI爱好者提供了一套完整的本地化部署指南。
2025-08-21 18:09:55
1029
原创 零代码搭本地私有AI!DeepSeek大模型+Dify从RAG知识库搭建到工作流落地
本文介绍了如何利用开源大模型DeepSeek和零代码平台Dify搭建本地私有AI应用。该组合解决了数据安全和易用性两大痛点:DeepSeek提供开源高性能模型,支持本地部署;Dify则通过四大核心模块(探索、工作室、知识库、工具)实现零代码搭建AI应用。重点解析了知识库的文档处理、召回优化和外部集成,以及工作流的变量控制、节点设计和复杂任务处理。最后通过旅游智能体和本地知识库问答两个实战案例,展示了从模板选择到应用落地的完整流程,为企业和开发者提供了一套安全、灵活、低成本的AI解决方案。
2025-08-20 22:21:47
1990
原创 DeepSeek大模型如何重塑AI Agent?从技术突破到行业落地
DeepSeek大模型凭借高性能与开源策略引爆AI行业,日活迅速突破3000万,被国内外科技巨头广泛接入。作为AI Agent的"核心大脑",其五大能力(推理决策、规划执行、工具调用、多模态融合、自动化拟人化)显著提升了智能体的实用价值。尤其是推理模型DeepSeek R1,通过强化学习优化复杂任务处理能力,在电商、教育、金融等领域实现突破性应用。该模型以开源、低成本、国产化等优势,推动AI Agent从大厂专属走向普及化,重塑行业竞争格局,加速多模态智能体的场景落地。文末还提供了11个
2025-08-20 22:15:55
775
原创 0基础也能懂!Ollama保姆级教程:Windows/mac/Linux/Docker全系统安装,搭配Open WebUI玩转本地大模型
摘要: Ollama作为开源轻量的大模型运行框架,让普通电脑(8GB内存+6GB显存)也能本地运行Llama 3.3、DeepSeek-R1等热门模型。本文提供多系统(Windows/macOS/Linux/Docker)安装指南,附具体命令和避坑方法,0基础用户也能快速上手。Ollama支持模型量化、跨平台部署和自动化管理,通过简单命令即可下载、运行和管理模型。搭配Open WebUI还能实现可视化交互,支持多模型切换和RAG知识库功能,彻底告别云端依赖,保障数据隐私。
2025-08-19 18:43:06
857
原创 DeepSeek从入门到本地部署全攻略:Ollama一键跑通DeepSeek-R1
DeepSeek 的出现,让 “普通开发者用低成本玩转正对标 o1 的大模型” 成为可能 —— 它不仅是一个模型,更是一套 “从训练到部署” 的完整解决方案:对新手:用 Ollama+Open WebUI,30 分钟跑通 DeepSeek-R1,零编程基础也能体验;对开发者:全开源架构 + 低显存需求,支持微调、二次开发,轻松落地垂类场景;对企业:低成本、高性能、合规友好,避免 “被闭源模型卡脖子”。2025 年,大模型的竞争早已不是 “谁性能更强”,而是 “谁更易落地”。DeepSeek 用 “开
2025-08-19 18:37:59
868
原创 从0到1搞懂DeepSeek大模型领域微调!医疗/法律案例实测提升40%+,解决显存不足/过拟合等8大痛点
DeepSeek领域微调不是“高深技术”,而是“有章法的实战”——从数据准备(保证质量)、模型选择(匹配任务)、参数配置(平衡效果与资源),到部署监控(持续迭代),每一步都有明确的“目标”和“避坑点”。文中医疗、法律案例证明,只需数千条数据、普通GPU,就能让模型性能提升20%-40%,真正实现“通用模型”到“领域专家”的跨越。无论你是AI新手还是行业开发者,跟着这套流程走,都能快速落地DeepSeek微调,解决实际业务痛点。【配套新书教材】
2025-08-18 18:50:34
1229
原创 7G显存+半小时出结果!保姆级DeepSeek R1大模型微调实战:用Unsloth搞定医疗领域SFT,从0到1定制专业大模型
文章摘要: 本文基于DeepSeek R1 Distill 7B大模型,通过Unsloth框架实现高效微调,仅需7G显存和半小时即可完成医疗领域适配。作者详细拆解了微调的核心概念(如LoRA技术、知识灌注与推理能力优化),并提供了从环境搭建到微调落地的全流程指南。通过医疗数据集(medical-o1-reasoning-SFT)的SFT训练,模型在医学问答中展现出更精准的专业知识和逻辑推理能力。实验证明,该方法显著降低算力门槛,适合AI新手快速实现垂直领域大模型定制化。
2025-08-18 18:46:11
1486
原创 零代码搞定!DeepSeek+Dify实战指南:本地化部署AI应用,3步搭知识库/智能体(附避坑技巧)
本文介绍了如何利用开源大模型DeepSeek和低代码平台Dify快速搭建本地化AI应用。通过三步部署方案(安装Dify、配置DeepSeek模型、创建应用),即使是新手也能零代码实现智能聊天助手、私有知识库和Agent智能体。文章重点讲解了各环节的避坑技巧,包括镜像源配置、知识库文档处理、工具授权等,并提供了实用建议如数据备份和模型升级。该组合方案显著降低了AI应用开发门槛,在保障数据安全的同时,支持企业快速落地定制化智能解决方案。
2025-08-15 18:17:20
859
原创 手把手教你用Ollama部署DeepSeek,本地搭建专属AI知识库(附Windows/CentOS双系统教程)
本文介绍了如何使用Ollama工具在本地部署DeepSeek大模型,并构建专属AI知识库。文章分为四个部分:首先解析Ollama和DeepSeek的核心功能与优势;其次详细说明Windows系统的三步部署流程;然后提供CentOS服务器通过Docker的部署方案;最后指导如何通过数据投喂使模型掌握专业领域知识。教程涵盖环境配置、模型选择、存储优化和远程调用等关键环节,适合不同技术水平的用户实现本地私有化AI部署,兼具实用性和安全性。
2025-08-15 18:12:21
1002
原创 DeepSeek-R2临近,DeepSeek-R1大模型爆火背后:从弃用本地版到成为推理之王,原理+实战全攻略
摘要: DeepSeek-R1大模型凭借混合专家系统(MoE)架构、高效计算优化和卓越推理能力成为AI领域现象级产品。其核心优势包括动态路由激活专家模块、梯度检查点技术降低显存需求,以及多阶段强化学习训练的深度推理能力。本地版因功能残缺、性能下降和工具链缺失被弃用,而联网版通过分布式推理、动态带宽优化和安全隔离实现高效稳定运行。R1通过两阶段训练(数据质量提升+基座再训练)显著提升推理准确性,已在金融风控、工业质检等场景落地。未来技术将向1-bit量化、专用NPU芯片等方向发展,推动边缘部署和生态扩展。开发
2025-08-14 18:26:18
1013
原创 从0到1微调DeepSeek大模型:大模型参数调优秘籍全揭秘
本文介绍了如何通过微调DeepSeek大语言模型将其转变为心理医生角色的完整流程。文章首先概述了项目目标,即使用EmoLLM心理健康数据集对deepseek-llm-7b-chat模型进行微调。随后详细讲解了微调所需的关键工具和环境配置,包括openMind Library和transformers框架的对比,以及硬件和软件要求。 核心部分重点介绍了数据预处理步骤和参数配置技巧,特别是LoRA技术的应用。文章提供了详细的参数设置建议,包括学习率、批次大小和训练轮次等。最后,通过实验结果分析不同参数对模型性能
2025-08-14 18:19:59
1620
原创 MCP:AI工具调用的“万能接口“!从Claude到本地模型,揭秘智能体如何打破生态壁垒
摘要: MCP(模型上下文协议)是Anthropic提出的AI工具调用统一标准,旨在解决不同模型与工具间的生态壁垒问题。通过"主机-服务器-客户端"三元架构,MCP实现了动态工具发现、跨模型兼容和双向通信,显著区别于OpenAI Function Call等封闭方案。该协议支持从Claude到本地小模型的广泛适配,已应用于企业数据整合、开发者工具复用及个人智能体开发。尽管面临安全性和协议碎片化等挑战,MCP作为AI领域的"万能接口",正推动智能体生态向开放协作演进。
2025-08-13 18:30:51
917
原创 大模型MCP开发:从ReAct到Manus,大模型工具调用全解析!揭秘AI智能体如何“思考+动手“颠覆未来
本文系统解析了AI智能体工具调用技术的发展历程,从ReAct框架的"边想边做"到Function Call的标准化协议,再到MCP的"即插即用"工具复用机制,揭示了智能体从"能说会道"到"能做实事"的进化路径。文章详细阐述了智能体"大脑+四肢"的架构设计,包括规划、记忆和工具三大核心组件,并通过Spring AI的工程实践案例展示了智能体开发的关键技术。最后指出,Manus等通用智能体通过CodeAct技术实
2025-08-13 18:26:39
1054
原创 用Coze搭建智能体,设计师1周上手,多Agent协作让作图效率翻10倍
摘要: Coze作为零代码AI智能体开发平台,让设计师无需编程即可搭建“设计智能体”,实现logo设计、VI系统、包装创作等任务的自动化处理。通过角色定位、核心技能和工具插件的配置,单Agent可独立完成专项设计;多Agent协作则通过“前台总管+子助手”模式,将复杂任务拆解为流水线作业,效率提升10倍。案例显示,智能体可实现局部重绘、任务分级和全案闭环,但设计师的专业知识(需求拆解、风格定义、落地逻辑)仍是保证输出质量的核心。Coze降低了设计自动化门槛,将重复劳动交给AI,让创意者更聚焦核心创新。 (字
2025-08-12 18:08:18
1375
原创 零代码玩转AI智能体!Coze从搭建到爆火全攻略:3步上手,多场景变现,小白也能当AI开发者
从注册到发布,Coze用“低门槛+高灵活”打破了AI开发的技术壁垒。无论是想做个帮自己省力的小工具,还是落地一个能变现的行业解决方案,跟着这份攻略走,小白也能快速上手。现在就打开官网,试试用Coze搭一个属于你的智能体——也许下一个爆火的AI应用,就出自你手。【配套新书教材】《GPT多模态大模型与AI Agent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】
2025-08-12 18:03:56
1118
原创 新手也能开发MCP服务:从0写代码到客户端调用,全流程+避坑指南
摘要: MCP(Model Context Protocol)作为大模型与外部资源的标准化接口协议,解决了AI模型调用本地文件、工具或API的兼容性问题。本文基于Python技术栈,详细拆解MCP服务的开发全流程:从环境配置(Python≥3.10、虚拟环境、SDK安装)到核心开发(工具函数、资源、提示词模板的定义),再到客户端调用与调试(CLINE配置、MCP Inspector排查)。通过具体代码示例(如获取桌面文件列表、生成问候语等),演示如何实现“5分钟快速开发”,并给出高级应用建议(权限控制、AP
2025-08-11 18:34:31
1647
原创 0代码也能玩?用Trae开发MCP服务全指南:从加法计算器到远程调用,新手也能轻松落地AI协作
摘要: 本文介绍如何利用MCP(模型协作协议)和Trae工具开发AI协作服务,以加法计算器为例演示从开发到调用的全流程。MCP通过标准化协议实现不同AI工具的互联互通,其核心包含资源(Resources)、工具(Tools)和提示词模板(Prompts)。使用Trae开发MCP服务时,只需简单配置环境、编写服务端代码(如注册加法函数和问候资源),并通过Trae客户端调用即可实现功能。文章还提供进阶技巧,如复用官方内置服务、调试工具使用及远程SSE通信方案,帮助开发者快速落地AI协作应用,即使是新手也能轻松上
2025-08-11 18:30:03
1091
原创 OpenAI开源大模型 GPT-OSS 开放权重语言模型解析:技术特性、部署应用及产业影响
OpenAI发布开源大模型GPT-OSS,包含120b和20b两个版本,打破闭源传统,推动AI普惠化。该模型采用MoE+Transformer架构,支持128k上下文长度,配备高效分词器,在STEM领域表现突出。20b版本仅需16GB内存即可运行,实测性能优异。GPT-OSS支持本地一键部署,已带动产业链相关企业发展。这一开放举措标志着高端大模型走向协作共享,为个人和企业提供了低成本使用大模型的机会,推动AI技术普及。
2025-08-09 20:57:46
1088
1
原创 OpenAI GPT-5多模态大模型技术架构深度揭秘:超级对齐遗产与自我博弈训练下的AI转折点
OpenAI GPT-5多模态大模型技术架构深度解析:超级对齐遗产与自我博弈训练下的AI转折点 GPT-5通过编程能力的重构升级和通用验证器技术引发行业震动,其创新性的"证明者-验证者博弈"训练机制实现了人类可验证的复杂推理输出。然而,该模型也面临训练数据枯竭、性能衰减等质疑,以及超级对齐技术遗产可能带来的兼容性风险。CEO山姆·奥特曼提出的"SaaS快时尚时代"隐喻引发对GPT-5商业模式和应用场景的热议。作为AI发展的关键转折点,GPT-5的技术路线验证结果将深刻
2025-08-09 18:46:51
1007
原创 OpenAI 开源模型 GPT-OSS MCP服务器深度解密:从工具集成到系统提示全自动化,浏览器+Python无缝协同的底层逻辑
本文深度解析了OpenAI开源模型GPT-OSS中的MCP服务器架构,揭示了其作为工具生态"神经中枢"的关键作用。通过标准化协议,MCP服务器实现了浏览器检索与Python代码执行的无缝集成,支持会话隔离、安全调用和动态提示生成。核心文件包括浏览器/Python服务封装、自动提示生成引擎及验证机制,解决了工具标准化、安全隔离和动态适配三大难题。该架构不仅降低了工具集成门槛,还构建了可扩展的AI工具生态体系,为复杂任务处理提供了可扩展的技术基础。
2025-08-08 18:23:21
1412
原创 深度揭秘 GPT-OSS源码:OpenAI 开源大模型凭什么引爆爆火?1200 亿参数竟能跑在单张 H100 上!
想体验强大的开源AI模型?GPT-OSS系列模型来了!它以Apache 2.0许可发布,商用无忧,还能自由微调。120B参数模型可在单张H100运行,20B模型仅需16GB内存。它不仅推理能力强,还能调整推理强度适配不同场景,更有完整思维链让你看清推理过程。内置浏览器工具超实用,能搜索、打开网页、查找内容,滚动浏览控制上下文,缓存机制提升效率,生成内容还会自动添加来源引用。无论你是开发者想构建应用,还是研究者要探索AI,GPT-OSS都能满足需求。现在就来试试,解锁开源AI的无限可能!
2025-08-08 18:16:03
714
原创 OpenAI 开源模型 GPT-OSS深度拆解:从1170亿参数到单卡部署,重构AI开源生态
OpenAI发布GPT-OSS开源大模型系列,包含120B和20B参数版本,采用Apache 2.0许可证开放。120B模型通过混合专家(MoE)架构和MXFP4量化技术实现单卡H100部署,支持128K上下文;20B模型适配消费级设备。架构创新包括MoE动态选通、GQA注意力机制和RoPE位置编码。训练数据涵盖STEM等领域,知识截止2024年6月。模型支持多级推理调节和工具调用,性能接近商业闭源模型,但存在幻觉率较高等问题。部署生态覆盖本地设备到云端,降低AI应用门槛。该开源举措可能推动行业技术透明化,
2025-08-07 18:06:28
1077
原创 OpenAI重磅开源:两款推理大模型震撼登场,性能比肩gpt-o4-mini,设备端推理新变革!
OpenAI重磅开源两款性能强劲的推理大模型GPT-OSS-120B和GPT-OSS-20B,标志着其重启开源战略。这两款模型采用Apache 2.0许可证,支持设备端部署(手机和笔记本电脑),性能比肩GPT-4-mini。创新特性包括:可调节推理力度、完整思维链可视化、专业领域微调能力、智能体功能(函数调用/网页浏览/代码执行)以及MXFP4量化技术降低硬件门槛。技术层面融合Transformer架构与MoE技术,支持128k长上下文,在编程、数学、医疗等领域基准测试中表现优异。OpenAI特别强调模型的
2025-08-07 17:55:04
756
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人