匈牙利算法

       学了一个新算法,匈牙利算法,用来处理二分图的问题的一个算法,啊,,对图论的畏惧减轻了不少,认认真真看下去博客,博主写的很好,以前一直遇到二分图的题,好好处理了吧~。

参看资料:

https://www.cnblogs.com/shenben/p/5573788.html

https://www.cnblogs.com/kuangbin/archive/2011/08/09/2132828.html

https://www.cnblogs.com/jianglangcaijin/p/6035945.html


二分图的基本概念:

1》二分图

       是图论中的一种特殊模型。

       若能将无向图G=(V,E)的顶点 V 划分两个交集为空的顶点集,并且任意一条边的两个端点都分别属于两个集合,则称图G为一个为二分图。

  

2》匹配

       一个匹配即一个包含若干条边的集合,且其中任意两条边没有公共端点。如下图,图3的红边即为图2的一个匹配。

    

3》最大匹配:
       在G的一个子图M中,M的边集中的任意两条边都不依附于同一个顶点,则称M是一个匹配。选择这样的边数最大的子集称为图的最大匹配问题最大匹配的边数称为最大匹配数

       如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。如果在左右两边加上源汇点后,图G等价于一个网络流,最大匹配问题可以转为最大流的问题。解决此问的匈牙利算法的本质就是寻找最大流的增广路径

4》最优匹配:

       最优匹配又称为带权最大匹配,是指在带有权值边二分图中,求一个匹配使得匹配边上的权值和最大。一般X和Y集合顶点个数相同,最优匹配也是一个完备匹配,即每个顶点都被匹配。如果个数不相等,可以通过补点加0边实现转化。一般使用KM算法解决该问题。【KM算法:http://www.cnblogs.com/logosG/p/logos.html

5》最小覆盖:

       二分图的最小覆盖分为最小顶点覆盖和最小路径覆盖

       ①最小顶点覆盖是指 用最少的顶点数使得二分图G中的每条边至少与其中一个点相关联

          二分图的最小顶点覆盖数=二分图的最大匹配数

       ②最小路径覆盖也称为最小边覆盖,是指用尽量少的不相交简单路径覆盖二分图中的所有顶点

           二分图的最小路径覆盖数=|V|-二分图的最大匹配数

6》最大独立集:

       最大独立集是指寻找一个点集,使得其中任意两点在图中无对应边任意两点不存在直接相连的边】。对于一般图来说,最大独立集是一个NP完全问题,对于二分图来说最大独立集=|V| - 二分图的最大匹配数

       【选出一些顶点使得这些顶点两两不相邻,则这些点构成的集合称为独立集。找出一个包含顶点数最多的独立集称为最大独立集。】

       方法:最大独立集=所有顶点数-最小顶点覆盖

                  

        在上面这个图中最小顶点覆盖=3,即2,4,7构成最小顶点覆盖,则其他点6个构成最大独立集。且其他点不可能相连。假设其他点相连则这条边必定没有被2,4,7 覆盖,与2,4,7是最小顶点覆盖矛盾。因此其他点之间必定没有边。而2,4,7是最小顶点覆盖,所谓最小就是不能再小了,因此我们的独立集就是最大了。

 

匈牙利算法的基本概念:

1》交替路:从一个未匹配出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。*

2》增广路:从一个未匹配出发,走交替路,如果途径另一个未匹配(出发的点不算),则这条交替路称为增广路(agumenting path)。

 

最大匹配与最小点覆盖

1》最小点覆盖:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边

2》最小割定理是一个二分图中很重要的定理:一个二分图中的 最大匹配数 等于这个图中的 最小点覆盖数

3》最小点集覆盖==最大匹配

       在这里解释一下原因,首先,最小点集覆盖一定>=最大匹配,因为假设最大匹配为n,那么我们就得到了n条互不相邻的边,光覆盖这些边就要用到n个点。现在我们来思考为什么最小点击覆盖一定<=最大匹配。任何一种n个点的最小点击覆盖,一定可以转化成一个n的最大匹配。因为最小点集覆盖中的每个点都能找到至少一条只有一个端点在点集中的边(如果找不到则说明该点所有的边的另外一个端点都被覆盖,所以该点则没必要被覆盖,和它在最小点集覆盖中相矛盾),只要每个端点都选择一个这样的边,就必然能转化为一个匹配数与点集覆盖的点数相等的匹配方案。所以最大匹配至少为最小点集覆盖数,即最小点击覆盖一定<=最大匹配。综上,二者相等。

 

匈牙利算法

       由增广路的性质,增广路中的匹配边总是比未匹配边多一条,所以如果我们放弃一条增广路中的匹配边选取未匹配边作为匹配边,则匹配的数量就会增加

       匈牙利算法就是在不断寻找增广路,如果找不到增广路,就说明达到了最大匹配

       先给一个例子 :
       1》起始没有匹配 :

       2》选中第一个x点找第一跟连线 

 


       3》选中第二个点找第二跟连线 


 


       4》发现x3的第一条边x3y1已经被人占了,找出x3出发的的交错路径x3-y1-x1-y4,把交错路中已在匹配上的边x1y1从匹配中去掉,剩余的边x3y1 x1y4加到匹配中去 

       5》同理加入x4,x5。 

       匈牙利算法可以深度有限或者广度优先,刚才的示例是深度优先,即x3找y1,y1已经有匹配,则找交错路。若是广度优先,应为:x3找y1,y1有匹配,x3找y2。

 

匈牙利算法代码【深度优先】

实现1:

/****************************************************
二分图匹配(匈牙利算法的DFS实现)
INIT:g[][]两边定点划分的情况
CALL:res=hungary();输出最大匹配数
优点:适于稠密图,DFS找增广路快,实现简洁易于理解
时间复杂度:O(VE);
****************************************************/
const int MAXN=1000;
int uN,vN;  //u,v数目
int g[MAXN][MAXN];//编号是0~n-1的 
int linker[MAXN];
bool used[MAXN];
bool dfs(int u)
{
    int v;
    for(v=0;v<vN;v++)
        if(g[u][v]&&!used[v])
        {
            used[v]=true;
            if(linker[v]==-1||dfs(linker[v]))
            {
                linker[v]=u;
                return true;
            }    
        }  
    return false;  
}    
int hungary()
{
    int res=0;
    int u;
    memset(linker,-1,sizeof(linker));
    for(u=0;u<uN;u++)
    {
        memset(used,0,sizeof(used));
        if(dfs(u))  res++;
    } 
    return res;   
}

实现2:

#define maxn 10//表示x集合和y集合中顶点的最大个数!
 int nx,ny;//x集合和y集合中顶点的个数
 int edge[maxn][maxn];//edge[i][j]为1表示ij可以匹配
 int cx[maxn],cy[maxn];//用来记录x集合中匹配的y元素是哪个!
 int visited[maxn];//用来记录该顶点是否被访问过!
 int path(int u)
 {
     int v;
     for(v=0;v<ny;v++)
     {
         if(edge[u][v]&&!visited[v])
         {
             visited[v]=1;
            if(cy[v]==-1||path(cy[v]))//如果y集合中的v元素没有匹配或者是v已经匹配,但是从cy[v]中能够找到一条增广路
             {
                 cx[u]=v;
                 cy[v]=u;
                 return 1;
             }
         }
     }
     return 0;
 }
 int maxmatch()
 {
     int res=0;
     memset(cx,0xff,sizeof(cx));//初始值为-1表示两个集合中都没有匹配的元素!
     memset(cy,0xff,sizeof(cy));
     for(int i=0;i<=nx;i++)
     {
         if(cx[i]==-1)
         {
             memset(visited,0,sizeof(visitited));
             res+=path(i);
         }
     }
     return res;
 }

 

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值