Python遥感图像处理应用篇(十):使用NDVI指数批量计算叶面积指数LAI

本文介绍了叶面积指数(LAI)的概念及其计算方法,特别是通过遥感数据反演,利用NDVI指数进行计算。讨论了不同植被类型与NDVI的关系,并提供了在ARCGIS Python环境中处理Landsat8 NDVI数据的代码示例,展示了计算结果的颜色渲染图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.叶面积指数概念

    叶面积指数(leaf area index, LAI)不同资料显示定义有所不同,有的说是指单位地面上的绿叶面积,是植被冠层最显著的特征之一,具体是指一定土地面积上植物叶面面积总和与土地面积之比。它是植被光合作用模型和蒸散模型中的重要参数之一。有的说是是一块地上阳光直射时作物叶片垂直投影的总面积与占地面积的比值。即:叶面积指数=投影总面积/占地面积。

2.叶面积指数计算方法

    叶面积指数测定方法有多种,比如百度百科中将其分为直接方法和间接方法。直接测定方法是一种传统的、具有一定破坏性的方法。包括:格点法和方格法、描形称重法(在一种特定的坐标纸上,用铅笔将待测叶片的轮廓描出并依叶形剪下坐标纸,称取叶形坐标纸重量,按公式计算叶面积)、仪器测定法叶面积测定仪可以分成两种类型,分别通过扫描和拍摄图像获取叶面积. 扫描型叶面积仪主要由扫描器(扫描相机) 、数据处理器、处理软件等组成,可以获得叶片的面积、长度、宽度、周长、叶片长度比和形状因子以及累积叶片面积等数据);间接方法包括:点接触法、消光系数发、经验公式法、遥感反演方法、光学仪器法。本文主要就是通过遥感数据反演的方法计算LAI。

    主要有2种遥感方法可用来估算叶面积指数,一种是统计模型法,

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空中旋转篮球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值