Python遥感图像处理应用篇(三十二):Python+GDAL实现遥感图像植被增强处理

本文介绍了使用Python和GDAL对GF-2遥感图像进行植被增强处理的方法。通过波段加权运算(包括R、G、B、NIR),特别是绿色和近红外波段,以增加植被颜色层次感。代码中处理了负值像元,并进行了0-255的拉伸,以便后续使用OpenCV等工具进一步处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.使用数据

GF-2数据,该数据经过辐射定标、大气校正、影像融合和正射校正处理。

2.实现效果

实现效果对比(图左原图,图右为增强后效果图):

计算方法:波段加权处理的方法来增强植被颜色的层次感,波段加权运算(包含R、G、B、NIR波段的数据),可使用绿色和近红外波段加权运算。如下公式:

          Green=a*Bandgreen+(1-a)*Bandnir           a是权重值,取0~1。
 参考:遥感影像植被颜色增强

3.完整代码

实现完整代码如下,还对图像进行了0-255的拉伸:

图像中有些像元可能存在负值,这里将负值的像元统一重新负值为1,对图像进行了0-255的拉伸,这样便于OPENCV对数据进一步进行处理。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空中旋转篮球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值