基于IWO入侵杂草优化的KNN最优分类算法的matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       入侵杂草优化(Invasive Weed Optimization, IWO)是一种模拟杂草入侵和扩散过程的元启发式优化算法,具有较强的全局搜索能力和鲁棒性。将IWO与KNN结合,通过优化K值和距离度量参数,可显著提升KNN算法的分类性能。

2.测试软件版本以及运行结果展示

MATLAB2022A/MATLAB2024B版本运行

3.核心程序

......................................................................
% 计算错误分类数
ctknnaco=0;
for i = 1 : sizenet(1,1)
    if Labs1(i) ~= predictedknn(i)
       ctknnaco=ctknnaco+1;
    end
end
finknn     = ctknnaco*100/ sizenet;
acc1=(100-finknn)-classErroraco; % 计算最终准确率

% 使用IWO选择的特征训练KNN分类器并评估性能
Mdl = fitcknn(Fsel,Treal,'NumNeighbors',5,'Standardize',1);
rng(1); % 固定随机数种子以保证结果可重现
knndat = crossval(Mdl);         % 交叉验证
classError = kfoldLoss(knndat); % 计算交叉验证误差

% 预测训练数据标签
predictedknn = resubPredict(Mdl);
ctknnsurf=0;
for i = 1 : sizenet(1,1)
    if Treal(i) ~= predictedknn(i)
        ctknnsurf=ctknnsurf+1;
    end
end
finknn=ctknnsurf*100/ sizenet;
acc2=(100-finknn)-classError; % 计算最终准确率

% 绘制混淆矩阵比较两种方法的性能
figure
subplot(1,2,1)
cmknn = confusionchart(Labs1,preknn);
cmknn.Title = (['基于所有特征数据KNN =  ' num2str(acc1) '%']);
cmknn.RowSummary = 'row-normalized';
cmknn.ColumnSummary = 'column-normalized';

% IWO特征选择后的混淆矩阵
subplot(1,2,2)
cmknn1 = confusionchart(Labs1,predictedknn);
cmknn1.Title = (['基于IWO优化算法选择特征数据KNN =  ' num2str(acc2) '%']);
cmknn1.RowSummary = 'row-normalized';
cmknn1.ColumnSummary = 'column-normalized';

% 输出最终准确率
figure;
bar([acc1,acc2]);
xlabel('1:基于所有特征数据KNN,   2:基于IWO优化算法选择特征数据KNN');
ylabel('准确率');
ylim([70,100]);
fprintf('基于所有特征数据KNN =  %0.4f.\n',acc1)
fprintf('基于IWO优化算法选择特征数据KNN =  %0.4f.\n',acc2)
104

4.本算法原理

       IWO算法模拟了杂草在新环境中的入侵过程,包括种子扩散、生长、繁殖和竞争。其核心思想是通过迭代优化,使 “杂草”(解)在搜索空间中不断扩散和竞争,最终找到最优解。算法主要涉及以下概念:

杂草个体:代表优化问题的一个候选解,在KNN优化中可表示为一组参数(如K值、距离度量参数)。

种子扩散:模拟杂草通过风力等方式扩散种子,对应解的局部搜索和变异。

繁殖能力:适应度高的杂草产生更多种子,体现优胜劣汰。

种间竞争:杂草争夺资源,适应度低的个体被淘汰,对应种群进化。

种子扩散模型(Lévy 飞行或高斯分布)

种子扩散距离通常服从重尾分布(如 Lévy 分布)或高斯分布,以模拟自然扩散的随机性和局部聚集性。

繁殖策略(适应度依赖的种子数)

杂草的繁殖能力由适应度函数决定,适应度越高,产生的种子数越多。种子数计算公式为:

竞争与选择(逻辑斯谛增长模型)

       K 近邻(K-Nearest Neighbor, KNN)算法是机器学习中经典的分类算法,其核心思想是通过计算样本间的距离,选择与测试样本最邻近的K个样本,根据多数表决原则进行分类。然而,KNN 算法的性能高度依赖于距离度量方式、K值选择以及样本分布等因素,容易受到噪声和高维数据的影响。入侵杂草优化(Invasive Weed Optimization, IWO)是一种模拟杂草入侵和扩散过程的元启发式优化算法,具有较强的全局搜索能力和鲁棒性。将IWO与KNN结合,通过优化K值和距离度量参数,可显著提升KNN算法的分类性能。

5.完整程序

VVV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件算法开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值