杀不死的人狼——我读《人月神话》(三)

2007年03月14日 01:43:00

>>==上一节

=====

三、《人月神话》是预言了未来还是控制了未来?
=====
事实是:我们现在的很多工程知识,--无论是从书上看到的,还是从实践中体验到的--大多未曾脱离《人月神话》之所言。
我在开篇中说《人月神话》"是一本可怕的书"。然而我认为真正的可怕之处在于:如今只要论及工程(且不要让人认为是离经叛道),那么所讲述的一定是 Brooks 的这样的经验以及由此推出的观点,或者在不违背这些经验和观点上的一些具体的实作方法!我们全然不顾书中所言是现象,还是本质的推论,或者只是现象归结的一个(未必正确的)答案。尽管这些答案大多数时候都如同预期地出现在你的现实工程中:
原文
基本含义
现实
规格说明的风格必须清晰、完整和准确。用户常常会单独提到某个定义,所以每条说明都必须重复所有的基本要素,所以所有文字都要相互一致。这往往使手册读起来枯燥乏味,但是精确比生动更加重要。 (P46)
重复所有基本要素,以便于单个的特性可能会被抽离出来进行讨论。
RUP
将来的规格说明同时包括形式化和记叙性定义两种方式。 (P46)
用形式化来精确定义,用记叙性定义来被充说明。
UML
使用实现来作为一种定义的方式有一些优点..(但)可能更加过度地规定了外部功能。 (P47)
陈述实现并不是设计中规定外部功能的方法。
UserCase 不应指示或暗示实现的方法。
对软件系统的体系结构师而言,存在一种更加可爱的方法来分发和强制定义。对于建立模块间接口语法,而非语义时,它特别有用.. (P48)
寻求一种描述功能而不涉及实现的方法,来协助架构师陈述它们的设计。
Interface
项目工作手册不是独立的一篇文档,它是对项目必须产出的一系列文档进行组织的一种结构。 项目所有的文档都必须是该结构的一部分.. (P54)
项目工作手册应当有组织、有结构地陈述项目各个方面的细节。
RUP
笨拙的文字归档工作确保了所有变更会被阅读,这正是工作手册要达到的目的。 (P56)
确保变更不会丢失。
需求管理系统或任务管理系统
是因为控制序更加复杂 , 所以需要更多的人员?或者因为它们被分派了过多的人员,所以要求有更多的模块?是因为复杂程度非常高,还是分配较多的人员,导致花费了更长的时间?没有人可以确定.. (P64)
随时关注生产率并控制它。
项目管理软件
但是只有书面计划是精确和可以沟通的。计划中包括了时间、地点、人物、做什么、资金.. (P75)
以书面化的形式来制定计划,并且确保一些要素的准确性。
项目管理软件
试验性的系统必须被构建然后丢弃.. (P77)
做一个原型并准备好扔掉它。
原型过程
目标上的一些变化无可避免,事先为它们做准备总比假设它们不会出现要好得多。不但目标上的变化不可避免,而且设计策略和技术上的变化也不可避免.. (P77)
为变化而做出设计。
延长设计和迭代的周期。风险评估。
流程图是被吹捧得最过分的一种程序文档。事实上,很多程序甚至不需要流程图,很少有程序需要一页纸以上的流程图。 (P107)
编程的结果产生流程图(以供讨论和分析),而不是对照着流程图进行编程。
编程的结果产生流程图(以供讨论和分析),而不是对照着流程图进行编程。
试图把信息放在不同的文件中,并努力维持它们之间的同步,是一种非常费力不讨好的事情.. (P108)
文档应该与代码同步。
代码文档化。
没有银弹 (P114)
所有曾被认为是银弹的东西都无情地否定了。
原文中还有许多类似的观点、现象和答案,都成为了现实工程中的既存现象。先民们所说的圣人以及通神者,皆因他们多数时候在正确地预言自己的现实。只有当这个"多数时候"变成少数的时候,先民们才会置疑圣人和通神者的能力。其实我们知道并没有预言未来的人,大多数时候是两种情形导致的假象:
  • 他做出了正确的判断;
  • 你主观地跟从了他对未来的设定。
后者是危险的。大师们预言了未来也就改变了未来,即便未来未必"应当"如同他所预言的那样。
但如果这种预言的前提不正确,那么未来必然脱离这种影响而回到它应该的状态上去。如同我们看到的另一些事实一样,有很多现象表明,我们正在回归工程本相的道路上摸索前进。我们也发现,在大多数情况下,先哲们的预言在实践中被印证着,只是偶尔"不太灵光"。下表则列出一些不同的例子:
Brooks 所述相同的例子
不同的例子
UML
AP :可以工作的软件重于求全责备的文档。
1
Interface
RUP
需求管理系统/任务系统
代码走查,结对编程。
AP :人和交互重于过程和工具。
AP :客户合作重于合同谈判。
项目管理软件
质量管理/评估和工程化测量
User Case 要尽可能避免指示或暗示实现的方法
测试驱动从一开始就规定表现是什么,以及如何确认它。
原型过程
迭代过程
2
延长设计和迭代的周期
缩短周期使得变化来不及发生。
编程的结果产生流程图(以供讨论和分析),而不是对照着流程图进行编程。
不强调具体代码实现方法的、设计过程中的流程图例。例如时序图。
3
代码文档化。
通过工具来使代码与文档同步维护。
所有曾被认为是银弹的东西都无情地否定了。
我们还是有成功的工程实践的。
1 :我例举了敏捷的一些观点,并不表明我是 AP/XP fans AP/XP 的问题另论,在这里,我只是说明存在一种不同的思想。
2 Brooks 后来承认"必须扔弃原型"是一个不太正确的观点。
3 Brooks 在这里没有犯错误,只是他所讨论的是狭义的流程图,而我们例举的时序图则更广义。
我们回顾上一小节,在《人月神话》中的那" 31% 的答案"的前提--也就是那 7% 的本质中,如下两项是明显存疑的(也是主要置疑):
  • 目标的本质:是大型工程,是系统项目,而不是程序
  • 个体的本质:是私利性的
其实早就有人意识到个体的本质"未必全是私利的",尊重这些个体就会带来一些效果。例如 AP 正是因为更尊重开发人员的个性与能力,以及相互间的合作而得到了效率的提升。
再进一步地说,既然 Brooks 设定了"大型工程或系统项目"这样的目标,并给出了一些答案。那么在"小那么一点点的"工程项目中,是不是这些答案就不必须了呢?例如 Brooks 的许多建议,对于某些目标--例如你要用为期三个月的时间开发一个的产品--就并不是很有效;或者根本无法实施--例如你的团队总共只有 6 个人,连"外科手术式的团队"都组织不起来。
Brooks 的答案对于同样的目标,以及在他所述的"本质"未能发生改变时,还是比较有效(或有实施的可能性)。因此上述一些例外,总是在上述的" 7% 的本质"被否定或被改变的情况下获得的。因而我们提出的问题是"如何否定或改变"这些难以撼动的本质。然而在我看来, Brooks 早已经在最佳位置上,给出了撬动它们的一个支点:
  • Brooks 认为构建"独立小型程序"与"编程系统产品"是不同的问题。
Brooks 讨论的编程系统产品的规模到底有多大呢?我想至少应该是以 IBM 360 为参考的。不过书中在引用 Joel Aron IBM 在马里兰州盖兹堡的系统技术主管)的例子时说,"大型意味着程序员的数目超过 25 人,将近 30,000 行的指令"。而按照《人月神话》的数据:人均效率 800 指令 / 人年,则这个"大型项目"应该需要 1.5 年才能完成。此外,还需要大约一倍的人工,来负责除开代码之外的测试、管理、文档和沟通等工作。
好的,如果你有一个"(至少) 50 人,开发一年半"的项目,那么你可以先接受 Brooks 的答案去实践一下:起码你可以有时间来讨论工程问题,也能够组建那样规模的团队。但是,难道只有这样的"大型工程"才算得工程,而"小那么一点点"的就不算吗?现实是,我们一方面在做着"小那么一点点的"工程项目,另一方面在听着整个业界喧嚣着"为更大规模的工程"而准备的工程理论。我们总在实践 Brooks 的"答案"或者"预言",而忘却这些答案的前提:
  • Brooks的经验源自对IBM 360等大型项目的实践与分析;
  • Brooks所述的工程是要得到编程系统产品;
  • Brooks认为编程系统产品的工作量可能是独立小型程序的9倍(在实现大致相同功能的情况下)。
事实上我们现在的软件工程的发展是被驾驭了,而不是被预言了。从本质上来说, Brooks 在《人月神话》中只是讨论了大型工程的实施,以及相应规模下的团队建设。而我们,便按照这样的设定来铺开了整个软件行业的工程化实施。
促成这种现状的,并不仅仅是一本书的力量,还在于商业的力量。因为只有在这样铺展开来的行业环境中,才可能有商业机会。--即使那些工程顾问与实施专家从来没有实施过" 50 人,开发一年半"这样的项目,只要他们能报出 Brooks 的名字,能谈及某些工具在应对"大型项目"中的成功经验,他们就已经成功了一半了。
为什么"敏捷"之初颇受争议?为什么敏捷对一些中小型的团队显得有效和可实施?为什么当这些争议被摆在眼前的成功平息之后,传统工程的理论家们却不忘恨恨地评上一句:那是一种不能(或难以)应用于大型工程的方法呢?!
因为如果大家都很"敏捷",都只做比这些大型工程"小那么一点点"的工程,那么传统工程的专家们就失业了。反过来,只有把工程做大,大到"敏捷"失去了意义,而"庞大"变成了实质的时候,传统工程就可以为任何失败找到借口:看啊, Brooks 就说过"没有银弹"嘛。

下一节==<<



Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=1528593


1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值