向量组极大无关组和向量组的秩

向量组的极大无关组定义

极大无关组包含两层含义:1 极大性,2无关性。

1 线性无关向量组的极大无关组就是其本身;

2 向量组与其极大无关组等价;

3 同一个向量组的极大无关组不唯一,但它们之间是等价的。

 向量组的秩定义

 

 推论:等价的向量组有相同的秩。

但是:有相同秩的两个向量组不一定等价。

向量组的秩的求法

行秩:矩阵行向量组的秩;列秩:矩阵列向量组的秩。

定理4:矩阵的行秩与列秩相等,为矩阵的秩。

推论:向量组的秩与该向量组所构成的矩阵的秩相等。

求向量组秩的方法:先将向量组构成一个矩阵,然后求矩阵的秩,这个秩就是向量组的秩。

极大无关组的求法

列摆行变换法:将向量按照列摆放,组成一个矩阵,然后对矩阵做初等行变换,化为梯形阵,然后从列中挑出与秩相同数量的列向量,得到极大无关组。

也可以使用行摆列变换。

极大无关组向量组等价是线性代数中的两个重要概念,下面分别解释这两个术语以及它们之间的关系。 ### 极大无关组 对于一个给定向量空间V内的有限向量集合S = {v_1, v_2,..., v_n},如果存在子集T ⊆ S满足以下条件,则称这个子集为S的一个极大无关组: - T中任何非零数量的向量都是线性无关的; - 如果从S中再加入任何一个不在T里的向量,那么得到的新集合将是线性相关的;即新集合不再保持线性独立性质。 换句话说,极大无关组是一个最大化的线性无关向量子集。它既包含了尽可能多的原集合中的信息又保证了这些元素之间没有多余的依赖关系。 ### 向量组等价 当说两组向量A={a_1,a_2,…,a_m} B={b_1,b_2,…,b_k} 是等价的时候,意味着这两组可以互相表示对方的所有成员。具体来说就是指每一组都可以由另一组经过线性组合而获得。形式上讲, - A中的每一个向量都能被B中的某些向量以某种系数相乘后再加起来所构成, - 反之亦然,B中的每个向量也可以用同样的方式通过A中的向量构造出来。 这种情况下我们可以说AB互为基底或者说是彼此张成的空间相同。 ### 它们的关系 在一个向量空间里,任意一组向量都有可能找到不止一种极大无关组,但是所有的极大无关组都拥有相同的基数(即其中含有的向量数目),这被称为该向量组(rank)。而且,不同极大无关组之间总是相互等价的——因为它们都能够生成整个向量空间并且自身内部没有任何冗余的信息。 此外,如果两个向量组等价,那么其中一个必然是另一个的最大线性无关部分之一,也就是说两者有着相同的。反之则不一定成立,除非是在讨论同一个向量空间的不同基的情况下。 综上所述,极大无关组向量组等价的概念紧密相连,前者描述了一种特殊的、最简化的向量选取方案,后者定义了一个更为广泛意义上的相似性标准,二者共同构成了理解向量空间结构的重要理论框架。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值