AutoGen + DeepSeek 实战:零代码生成完整测试方案,还能导出Excel!

📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)

📝 职场经验干货:

软件测试工程师简历上如何编写个人信息(一周8个面试)

软件测试工程师简历上如何编写专业技能(一周8个面试)

软件测试工程师简历上如何编写项目经验(一周8个面试)

软件测试工程师简历上如何编写个人荣誉(一周8个面试)

软件测试行情分享(这些都不了解就别贸然冲了.)

软件测试面试重点,搞清楚这些轻松拿到年薪30W+

软件测试面试刷题小程序免费使用(永久使用)


AI测试用例生成器:测试的救星来了!

大家好!今天我们来聊聊一个让你从“写测试用例”这件头疼的事情中解脱出来的神器——AI测试用例生成器!是的,你没听错,这玩意儿不仅能帮你写测试用例,还能高效、精准地输出结构化的结果,甚至还能直接生成Excel文档!是不是听起来就很香?那就赶紧坐稳了,咱们来详细扒一扒这个工具的实现 !


测试用例的痛,谁写谁知道

在开始介绍神器之前,咱们先来聊聊“测试用例”这个东西。对测试同学来说,在测需求时候,已经够让人头秃了,但更让人抓狂的是——还要写测试用例!而且测试用例不仅要写得详细、严谨,还得考虑各种边界情况、异常处理……总之,写完一套测试用例,感觉整个人都被掏空了。

更别提那些“需求描述含糊不清”的情况。产品经理丢过来一句话:“做个用户注册功能吧,用户名要支持3-20个字符,密码至少8位,还得有数字和字母。”然后呢?然后你就得绞尽脑汁琢磨,这个需求到底需要哪些测试场景,是不是还得考虑用户名全是空格的情况?密码全是数字算不算合规?邮箱地址带个空格会不会炸?光想想这些问题,我就想辞职!(开个玩笑,老板别打我。)


AI测试用例生成器登场!

就在我们测试同学被测试用例折磨得死去活来的时候,这款AI测试用例生成器横空出世了!它基于先进的大语言模型技术(比如DeepSeek),结合了各种智能代理框架和数据结构化工具,简直就是为了解救我们而生的!

这款神器能做什么?

简单来说,它可以根据你的需求描述,自动生成高质量、结构化的测试用例。而且这些测试用例不仅逻辑清晰,还能直接导出成 Excel 或者 Markdown 文档,是不是听起来就很专业?

具体功能包括:

  1. 结构化输出

    :每个测试用例都包含用例ID、优先级、标题、前置条件、步骤和预期结果等字段,清清楚楚,一目了然。

  2. 边界条件识别

    :比如你提到“用户名长度为3-20个字符”,它会自动帮你生成“用户名为3字符”“用户名为20字符”“用户名为空”的边界测试。

  3. 负面测试

    :这玩意儿还能考虑各种异常情况,比如“密码全是空格”“邮箱格式错误”等等。

  4. 高效异步处理

    :它不仅聪明,还特别快!几秒钟就能生成一整套测试用例。

  5. Excel导出

    :生成的测试用例还能一键导出成Excel文档,直接拿去交差!


技术栈揭秘:这款神器靠什么打天下?

要说这款工具为什么这么牛,那当然离不开它背后的技术支持。以下是它的核心技术栈:

1. DeepSeek大语言模型

这是这款工具的“大脑”。DeepSeek是一种先进的大语言模型(类似于GPT系列),擅长自然语言理解和生成。你只需要输入一段需求描述,它就能理解你的意图,并生成对应的测试用例。

2. Autogen智能代理框架

Autogen是一个强大的智能代理框架,它让AI能够像一个“专业测试工程师”一样思考和工作。通过这个框架,AI可以根据需求自动生成多个场景的测试用例,还能确保输出的内容逻辑严谨。

3. Pydantic结构化数据

Pydantic是Python中的一个数据验证库,它确保生成的测试用例数据是结构化且符合规范的。换句话说,它就像一个“数据质量检查员”,帮我们把关输出结果。

4. Streamlit交互界面

Streamlit是一个快速构建Web应用的框架,它让这款工具有了一个直观、易用的用户界面。你只需要打开网页,就能像聊天一样输入需求,并实时查看生成的结果。

5. Pandas数据处理

Pandas是Python中处理表格数据的神器,用它来整理和导出Excel文档简直不要太方便!


使用体验:简单到离谱!

接下来,我们来看看这款工具到底有多好用。整个操作流程可以用四个字概括:简单粗暴

第一步:输入需求描述

在工具的文本框中输入你的需求描述,比如:

开发一个用户注册功能,要求用户提供用户名、密码和电子邮件。用户名长度为3-20个字符,密码长度至少为8个字符且必须包含数字和字母,电子邮件必须是有效格式。

第二步:调整高级选项

如果你有特殊需求,比如希望包含更多边界情况或者负面测试,可以在高级选项中调整参数。比如:

  • 测试级别:单元测试、集成测试、系统测试等

  • 测试优先级:高、中、低

  • 生成的测试用例数量:1到10个

  • 是否包含边界情况和负面测试

第三步:点击“生成”

点一下“生成测试用例”按钮,然后……喝杯咖啡等几秒钟。

第四步:查看结果

几秒钟后,你就能看到一整套结构化的测试用例!每个用例都有详细的步骤和预期结果,比如:

用例ID: TC-REG-001
优先级: P0
标题: 验证用户注册功能 - 有效输入
前置条件: 用户未登录,访问注册页面
步骤:
1. 输入有效用户名
2. 输入符合要求的密码
3. 输入有效邮箱
4. 点击注册按钮
预期结果: 注册成功,提示注册成功信息

第五步:下载文档

如果你需要把这些测试用例分享给团队,可以直接下载成Excel或者Markdown格式。是不是特别方便?


测试同学的真实感受

作为一名测试同学,我必须说,这款工具简直就是我的救星!以前写测试用例的时候,我总觉得自己像个苦逼的小作坊工人,一点点手动填表。但用了这个AI工具后,我感觉自己瞬间升级成了管理层——只需要下达命令,剩下的交给AI就好了!

更重要的是,这款工具不仅帮我节省了时间,还让我避免了很多低级错误。比如,以前我经常漏掉一些边界情况,但现在AI会自动帮我补上。


总结:人人都爱AI测试用例生成器

如果你是一名测试工程师,那么这款AI测试用例生成器绝对值得一试。它不仅能帮你提高工作效率,还能让你从繁琐的手动工作中解放出来,把更多时间花在更有意义的事情上(比如摸鱼)。

最后,用一句话总结这款工具的魅力:

“从此以后,再也不用熬夜写测试用例了!”

还等什么?赶紧试试吧!你的头发会感谢你的!

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】
在这里插入图片描述​​​​
在这里插入图片描述​​​​

### DeepSeekAutoGen概述 DeepSeekAutoGen代表了当前AI领域内两种不同的技术解决方案,旨在提升自动化生成内容的质量以及简化其部署过程。对于希望利用这些先进工具实现特定业务目标的企业和个人开发者而言,理解两者的工作原理及其应用场景至关重要。 #### DeepSeek简介 作为一款专注于自然语言处理(NLP)任务的强大引擎,DeepSeek提供了多种预训练模型供用户选择,并支持微调以适应更具体的场景需求[^1]。该平台不仅限于文本生成,在问答系统、情感分析等方面同样表现出色。通过API接口轻松接入现有工作流中,使得即使是不具备深厚机器学习背景的知识工作者也能迅速上手操作。 #### AutoGen详解 相比之下,AutoGen则更加侧重于自动代码生成功能。它允许使用者定义模板并通过简单的参数设置来自动生成符合要求的应用程序源码片段或完整模块。这种能力极大地提高了软件开发效率并减少了人为错误的发生几率。更重要的是,借助内置优化算法,所产出的结果往往具备较高的性能表现[^2]。 #### 集成配置方法 为了更好地发挥各自优势并将二者有机结合在一起,可以考虑如下策略: - **环境准备**:确保本地计算机已安装Python解释器及相关依赖库;注册账号获取必要的API密钥。 - **数据交换机制设计**:基于RESTful API标准建立稳定的数据传输通道,以便于两套系统间的信息互通无阻。 - **联合调试流程制定**:针对可能出现的问题提前规划好排查思路和技术手段,比如日志记录、异常捕获等措施。 ```python import requests def call_deepseek_api(prompt, api_key): url = "https://api.deepseek.com/v1/generate" headers = {"Authorization": f"Bearer {api_key}"} payload = {"prompt": prompt} response = requests.post(url, json=payload, headers=headers) return response.json() def generate_code_with_autogen(template_id, params, autogen_token): endpoint = f"https://autogen.io/templates/{template_id}/generate" auth_header = {'Authorization': 'Token ' + autogen_token} result = requests.get(endpoint, params=params, headers=auth_header).text return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值