基于四大AI交互协议的AI测试平台架构

📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)

📝 职场经验干货:

软件测试工程师简历上如何编写个人信息(一周8个面试)

软件测试工程师简历上如何编写专业技能(一周8个面试)

软件测试工程师简历上如何编写项目经验(一周8个面试)

软件测试工程师简历上如何编写个人荣誉(一周8个面试)

软件测试行情分享(这些都不了解就别贸然冲了.)

软件测试面试重点,搞清楚这些轻松拿到年薪30W+

软件测试面试刷题小程序免费使用(永久使用)


在IT互联网技术领域,一个APP或系统背后的技术架构,有web层、server层、中间件、数据库和底层的操作系统,看起来很复杂。后来大家逐渐形成了较为统一的标准,即通过API接口将不同层级之间串联起来,最终才能形成一个能提供完善服务的APP应用。

AI领域目前也出现了类似的统一标准或者机制,来实现大模型、智能体等AI工具之间的协作通信。截至目前,AI交互协议共出现了三种代表性的范式,如下图所示,分别是FC、MCP、A2A。这三大范式分别由不同公司或机构在AI发展的不同阶段推出,解决了不同的问题。

上述三大AI交互协议中,Function Calling负责实现技术细节的点,MCP负责模型之间通信,A2A负责多个Agent之间的协作,基于这三大交易协议,我们基本可以构建一个完善的AI后端服务。

而AG-UI的出现,在我看来正好弥补了AI交互的协议栈的最后一块短板,可以让我们更好地构建AI应用,推动AI在工作场景中落地。即AG-UI可以推动AI应用“走向前台”,让AI从过去的后台服务工具,升级为真正的生产力工具。

在半个月前联合融管理社区的《践行者》直播中,我曾分享过这样一个观点:基于Function Calling、MCP、A2A和AG-UI,我们可以推动服务于测试工作的全流程AI应用。下面是我对这一观点的阐述:

1、大模型的本质是概率预测机器,本身不具备幂等性,在信息幻觉未被很好的解决之前,AI的落地应用一定要极度收敛,找到具体的应用场景。在场景选择方面,尽可能贴近标准化场景,或者更易于标准化的场景。

我们日常的测试工作基本都需要经历需求-编码-测试-验收-发布五大阶段。其中:

  • 需求相对来说不可控,且很难标准化;

  • 编码反而很容易标准化,且目前已经有了很好的最佳实践和编码规范;

  • 测试和验收阶段对测试同学来说是最可控也最容易标准化的,无论是测试用例、测试数据还是自动化甚至性能测试脚本,都是确定性很强的场景。

  • 发布阶段,包含发布后的线上验收和日常巡检,现在大多都是基于自动化执行,这些都是较为容易可以规范和标准化的场景。

因此我们可以得到这样一个明确的范围,即:当前阶段AI在研发测试领域落地,有如下几个确定性较强的应用场景:

  • 测试用例生成:特别是基于历史迭代版本的主流程回归测试用例diff;

  • 测试数据生成:因为业务最小粒度对应的数据,之间都有明确的映射关系(商品对应的款色码、sku、库存);

  • 测试脚本生成:无论是自动化测试还是性能测试,都是基于具体的业务场景,有明确的预期目标和结果;

  • 线上巡检监控:线上主流程测试验收、线上核心场景自动化巡检、线上监控、线上发布变更(表结构变更-SQL),同样具有明确的预期目标和结果;

2、基于上述确定性较强的几个场景,我们可以借助四大AI交互协议来构建全流程的测试平台,思路如下:

  • Function Calling:实现具体功能,如根据业务和数据映射关系生成测试数据;

  • MCP:负责模型和其他工具(Agent)之间的通信,比如底层模型采用Qwen3,测试数据生成模块封装成Agent;

  • A2A:负责实现多个Agent之间的通信,比如用例生成Agent、数据生成Agent、测试脚本生成Agent之间相互协作;

  • AG-UI:实现后台服务(从大模型到Agent再到具体功能点)和前台的交互,最终构建为一个完善的AI全流程测试平台;

3、基于上述第二部分的思路,我们可以实现这样一个AI全流程测试平台,具体的功能和工程结构如下:

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】

​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值