推荐器评估
评估推进器,需要对比估计的preference和实际的preference
实现方法很简单,从实际数据中去掉一些preference,做为test数据,对剩下的数据做预测,和test数据对比
平均差值越低越好,也可以使用平方根均差
代码:
package mia.recommender.ch02;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.RecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.eval.AverageAbsoluteDifferenceRecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import org.apache.mahout.common.RandomUtils;
import java.io.File;
class EvaluatorIntro {
private EvaluatorIntro() {
}
public static void main(String[] args) throws Exception {
RandomUtils.useTestSeed();
DataModel model = new FileDataModel(new File("intro.csv"));
RecommenderEvaluator evaluator =
new AverageAbsoluteDifferenceRecommenderEvaluator();
// Build the same recommender for testing that we did last time:
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
@Override
public Recommender buildRecommender(DataModel model) throws TasteException {
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood =
new NearestNUserNeighborhood(2, similarity, model);
return new GenericUserBasedRecommender(model, neighborhood, similarity);
}
};
// Use 70% of the data to train; test using the other 30%.
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
System.out.println(score);
}
}
这里增加了两个类,一个是RecommendEvaluator,一个是RecommendBuilder