item based推荐
很多方面是和user based相同的
不同的是user based先要查找和自己相似用户,从他们喜欢的里边推荐,而item based是先找到user喜欢的item,然后寻找和这个item相似的item
user based算法当用户多时候花费时间多,item based算法当item多时候花费时间多
算法
for every item i that u has no preference for yet
for every item j that u has a preference for
compute a similarity s between i and j
add u's preference for j, weighted by s, to a running average
return the top items, ranked by weighted average
当item数量少于user数量时,item based比较好,且item的变化不大,可以预先计算item之间相似性
这里有个重要问题书上没说,就是如何建立item之间的相似性,需要填哪些项表明它们相似
item based recommender
GenericItemBasedRecommender