mahout in action推荐系统阅读笔记(6)

item based推荐

很多方面是和user based相同的

不同的是user based先要查找和自己相似用户,从他们喜欢的里边推荐,而item based是先找到user喜欢的item,然后寻找和这个item相似的item

user based算法当用户多时候花费时间多,item based算法当item多时候花费时间多

算法

for every item i that u has no preference for yet
  for every item j that u has a preference for
    compute a similarity s between i and j
    add u's preference for j, weighted by s, to a running average
return the top items, ranked by weighted average

当item数量少于user数量时,item based比较好,且item的变化不大,可以预先计算item之间相似性

这里有个重要问题书上没说,就是如何建立item之间的相似性,需要填哪些项表明它们相似

item based recommender

GenericItemBasedRecommender

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值