linear regression example

----------------------------------------------------------------------
-- example-linear-regression.lua
-- 
-- This script provides a very simple step-by-step example of
-- linear regression, using Torch7's neural network (nn) package,
-- and the optimization package (optim).
--

-- note: to run this script, simply do:
-- torch script.lua

-- to run the script, and get an interactive shell once it terminates:
-- torch -i script.lua

-- we first require the necessary packages.
-- note: optim is a 3rd-party package, and needs to be installed
-- separately. This can be easily done using Torch7's package manager:
-- torch-pkg install optim

require 'torch'
require 'optim'
require 'nn'


----------------------------------------------------------------------
-- 1. Create the training data

-- In all regression problems, some training data needs to be 
-- provided. In a realistic scenarios, data comes from some database
-- or file system, and needs to be loaded from disk. In that 
-- tutorial, we create the data source as a Lua table.

-- In general, the data can be stored in arbitrary forms, and using
-- Lua's flexible table data structure is usually a good idea. 
-- Here we store the data as a Torch Tensor (2D Array), where each
-- row represents a training sample, and each column a variable. The
-- first column is the target variable, and the others are the
-- input variables.

-- The data are from an example in Schaum's Outline:
-- Dominick Salvator and Derrick Reagle
-- Shaum's Outline of Theory and Problems of Statistics and Economics
-- 2nd edition
-- McGraw-Hill
-- 2002

-- The data relate the amount of corn produced, given certain amounts
-- of fertilizer and insecticide. See p 157 of the text.

-- In this example, we want to be able to predict the amount of
-- corn produced, given the amount of fertilizer and intesticide used.
-- In other words: fertilizer & insecticide are our two input variables,
-- and corn is our target value.

--  {corn, fertilizer, insecticide}
data = torch.Tensor{
   {40,  6,  4},
   {44, 10,  4},
   {46, 12,  5},
   {48, 14,  7},
   {52, 16,  9},
   {58, 18, 12},
   {60, 22, 14},
   {68, 24, 20},
   {74, 26, 21},
   {80, 32, 24}
}


----------------------------------------------------------------------
-- 2. Define the model (predictor)

-- The model will have one layer (called a module), which takes the 
-- 2 inputs (fertilizer and insecticide) and produces the 1 output 
-- (corn).

-- Note that the Linear model specified below has 3 parameters:
--   1 for the weight assigned to fertilizer
--   1 for the weight assigned to insecticide
--   1 for the weight assigned to the bias term

-- In some other model specification schemes, one needs to augment the
-- training data to include a constant value of 1, but this isn't done
-- with the linear model.

-- The linear model must be held in a container. A sequential container
-- is appropriate since the outputs of each module become the inputs of 
-- the subsequent module in the model. In this case, there is only one
-- module. In more complex cases, multiple modules can be stacked using
-- the sequential container.

-- The modules are all defined in the neural network package, which is
-- named 'nn'.

model = nn.Sequential()                 -- define the container
ninputs = 2; noutputs = 1
model:add(nn.Linear(ninputs, noutputs)) -- define the only module


----------------------------------------------------------------------
-- 3. Define a loss function, to be minimized.

-- In that example, we minimize the Mean Square Error (MSE) between
-- the predictions of our linear model and the groundtruth available
-- in the dataset.

-- Torch provides many common criterions to train neural networks.

criterion = nn.MSECriterion()


----------------------------------------------------------------------
-- 4. Train the model

-- To minimize the loss defined above, using the linear model defined
-- in 'model', we follow a stochastic gradient descent procedure (SGD).

-- SGD is a good optimization algorithm when the amount of training data
-- is large, and estimating the gradient of the loss function over the 
-- entire training set is too costly.

-- Given an arbitrarily complex model, we can retrieve its trainable
-- parameters, and the gradients of our loss function wrt these 
-- parameters by doing so:

x, dl_dx = model:getParameters()

-- In the following code, we define a closure, feval, which computes
-- the value of the loss function at a given point x, and the gradient of
-- that function with respect to x. x is the vector of trainable weights,
-- which, in this example, are all the weights of the linear matrix of
-- our model, plus one bias.

feval = function(x_new)
   -- set x to x_new, if differnt
   -- (in this simple example, x_new will typically always point to x,
   -- so the copy is really useless)
   if x ~= x_new then
      x:copy(x_new)
   end

   -- select a new training sample
   _nidx_ = (_nidx_ or 0) + 1
   if _nidx_ > (#data)[1] then _nidx_ = 1 end

   local sample = data[_nidx_]
   local target = sample[{ {1} }]      -- this funny looking syntax allows
   local inputs = sample[{ {2,3} }]    -- slicing of arrays.

   -- reset gradients (gradients are always accumulated, to accomodate 
   -- batch methods)
   dl_dx:zero()

   -- evaluate the loss function and its derivative wrt x, for that sample
   local loss_x = criterion:forward(model:forward(inputs), target)
   model:backward(inputs, criterion:backward(model.output, target))

   -- return loss(x) and dloss/dx
   return loss_x, dl_dx
end

-- Given the function above, we can now easily train the model using SGD.
-- For that, we need to define four key parameters:
--   + a learning rate: the size of the step taken at each stochastic 
--     estimate of the gradient
--   + a weight decay, to regularize the solution (L2 regularization)
--   + a momentum term, to average steps over time
--   + a learning rate decay, to let the algorithm converge more precisely

sgd_params = {
   learningRate = 1e-3,
   learningRateDecay = 1e-4,
   weightDecay = 0,
   momentum = 0
}

-- We're now good to go... all we have left to do is run over the dataset
-- for a certain number of iterations, and perform a stochastic update 
-- at each iteration. The number of iterations is found empirically here,
-- but should typically be determinined using cross-validation.

-- we cycle 1e4 times over our training data
for i = 1,1e4 do

   -- this variable is used to estimate the average loss
   current_loss = 0

   -- an epoch is a full loop over our training data
   for i = 1,(#data)[1] do

      -- optim contains several optimization algorithms. 
      -- All of these algorithms assume the same parameters:
      --   + a closure that computes the loss, and its gradient wrt to x, 
      --     given a point x
      --   + a point x
      --   + some parameters, which are algorithm-specific

      _,fs = optim.sgd(feval,x,sgd_params)

      -- Functions in optim all return two things:
      --   + the new x, found by the optimization method (here SGD)
      --   + the value of the loss functions at all points that were used by
      --     the algorithm. SGD only estimates the function once, so
      --     that list just contains one value.

      current_loss = current_loss + fs[1]
   end

   -- report average error on epoch
   current_loss = current_loss / (#data)[1]
   print('current loss = ' .. current_loss)

end


----------------------------------------------------------------------
-- 5. Test the trained model.

-- Now that the model is trained, one can test it by evaluating it
-- on new samples.

-- The text solves the model exactly using matrix techniques and determines
-- that 
--   corn = 31.98 + 0.65 * fertilizer + 1.11 * insecticides

-- We compare our approximate results with the text's results.

text = {40.32, 42.92, 45.33, 48.85, 52.37, 57, 61.82, 69.78, 72.19, 79.42}

print('id  approx   text')
for i = 1,(#data)[1] do
   local myPrediction = model:forward(data[i][{{2,3}}])
   print(string.format("%2d  %6.2f %6.2f", i, myPrediction[1], text[i]))
end
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值