linear regression example

----------------------------------------------------------------------
-- example-linear-regression.lua
-- 
-- This script provides a very simple step-by-step example of
-- linear regression, using Torch7's neural network (nn) package,
-- and the optimization package (optim).
--

-- note: to run this script, simply do:
-- torch script.lua

-- to run the script, and get an interactive shell once it terminates:
-- torch -i script.lua

-- we first require the necessary packages.
-- note: optim is a 3rd-party package, and needs to be installed
-- separately. This can be easily done using Torch7's package manager:
-- torch-pkg install optim

require 'torch'
require 'optim'
require 'nn'


----------------------------------------------------------------------
-- 1. Create the training data

-- In all regression problems, some training data needs to be 
-- provided. In a realistic scenarios, data comes from some database
-- or file system, and needs to be loaded from disk. In that 
-- tutorial, we create the data source as a Lua table.

-- In general, the data can be stored in arbitrary forms, and using
-- Lua's flexible table data structure is usually a good idea. 
-- Here we store the data as a Torch Tensor (2D Array), where each
-- row represents a training sample, and each column a variable. The
-- first column is the target variable, and the others are the
-- input variables.

-- The data are from an example in Schaum's Outline:
-- Dominick Salvator and Derrick Reagle
-- Shaum's Outline of Theory and Problems of Statistics and Economics
-- 2nd edition
-- McGraw-Hill
-- 2002

-- The data relate the amount of corn produced, given certain amounts
-- of fertilizer and insecticide. See p 157 of the text.

-- In this example, we want to be able to predict the amount of
-- corn produced, given the amount of fertilizer and intesticide used.
-- In other words: fertilizer & insecticide are our two input variables,
-- and corn is our target value.

--  {corn, fertilizer, insecticide}
data = torch.Tensor{
   {40,  6,  4},
   {44, 10,  4},
   {46, 12,  5},
   {48, 14,  7},
   {52, 16,  9},
   {58, 18, 12},
   {60, 22, 14},
   {68, 24, 20},
   {74, 26, 21},
   {80, 32, 24}
}


----------------------------------------------------------------------
-- 2. Define the model (predictor)

-- The model will have one layer (called a module), which takes the 
-- 2 inputs (fertilizer and insecticide) and produces the 1 output 
-- (corn).

-- Note that the Linear model specified below has 3 parameters:
--   1 for the weight assigned to fertilizer
--   1 for the weight assigned to insecticide
--   1 for the weight assigned to the bias term

-- In some other model specification schemes, one needs to augment the
-- training data to include a constant value of 1, but this isn't done
-- with the linear model.

-- The linear model must be held in a container. A sequential container
-- is appropriate since the outputs of each module become the inputs of 
-- the subsequent module in the model. In this case, there is only one
-- module. In more complex cases, multiple modules can be stacked using
-- the sequential container.

-- The modules are all defined in the neural network package, which is
-- named 'nn'.

model = nn.Sequential()                 -- define the container
ninputs = 2; noutputs = 1
model:add(nn.Linear(ninputs, noutputs)) -- define the only module


----------------------------------------------------------------------
-- 3. Define a loss function, to be minimized.

-- In that example, we minimize the Mean Square Error (MSE) between
-- the predictions of our linear model and the groundtruth available
-- in the dataset.

-- Torch provides many common criterions to train neural networks.

criterion = nn.MSECriterion()


----------------------------------------------------------------------
-- 4. Train the model

-- To minimize the loss defined above, using the linear model defined
-- in 'model', we follow a stochastic gradient descent procedure (SGD).

-- SGD is a good optimization algorithm when the amount of training data
-- is large, and estimating the gradient of the loss function over the 
-- entire training set is too costly.

-- Given an arbitrarily complex model, we can retrieve its trainable
-- parameters, and the gradients of our loss function wrt these 
-- parameters by doing so:

x, dl_dx = model:getParameters()

-- In the following code, we define a closure, feval, which computes
-- the value of the loss function at a given point x, and the gradient of
-- that function with respect to x. x is the vector of trainable weights,
-- which, in this example, are all the weights of the linear matrix of
-- our model, plus one bias.

feval = function(x_new)
   -- set x to x_new, if differnt
   -- (in this simple example, x_new will typically always point to x,
   -- so the copy is really useless)
   if x ~= x_new then
      x:copy(x_new)
   end

   -- select a new training sample
   _nidx_ = (_nidx_ or 0) + 1
   if _nidx_ > (#data)[1] then _nidx_ = 1 end

   local sample = data[_nidx_]
   local target = sample[{ {1} }]      -- this funny looking syntax allows
   local inputs = sample[{ {2,3} }]    -- slicing of arrays.

   -- reset gradients (gradients are always accumulated, to accomodate 
   -- batch methods)
   dl_dx:zero()

   -- evaluate the loss function and its derivative wrt x, for that sample
   local loss_x = criterion:forward(model:forward(inputs), target)
   model:backward(inputs, criterion:backward(model.output, target))

   -- return loss(x) and dloss/dx
   return loss_x, dl_dx
end

-- Given the function above, we can now easily train the model using SGD.
-- For that, we need to define four key parameters:
--   + a learning rate: the size of the step taken at each stochastic 
--     estimate of the gradient
--   + a weight decay, to regularize the solution (L2 regularization)
--   + a momentum term, to average steps over time
--   + a learning rate decay, to let the algorithm converge more precisely

sgd_params = {
   learningRate = 1e-3,
   learningRateDecay = 1e-4,
   weightDecay = 0,
   momentum = 0
}

-- We're now good to go... all we have left to do is run over the dataset
-- for a certain number of iterations, and perform a stochastic update 
-- at each iteration. The number of iterations is found empirically here,
-- but should typically be determinined using cross-validation.

-- we cycle 1e4 times over our training data
for i = 1,1e4 do

   -- this variable is used to estimate the average loss
   current_loss = 0

   -- an epoch is a full loop over our training data
   for i = 1,(#data)[1] do

      -- optim contains several optimization algorithms. 
      -- All of these algorithms assume the same parameters:
      --   + a closure that computes the loss, and its gradient wrt to x, 
      --     given a point x
      --   + a point x
      --   + some parameters, which are algorithm-specific

      _,fs = optim.sgd(feval,x,sgd_params)

      -- Functions in optim all return two things:
      --   + the new x, found by the optimization method (here SGD)
      --   + the value of the loss functions at all points that were used by
      --     the algorithm. SGD only estimates the function once, so
      --     that list just contains one value.

      current_loss = current_loss + fs[1]
   end

   -- report average error on epoch
   current_loss = current_loss / (#data)[1]
   print('current loss = ' .. current_loss)

end


----------------------------------------------------------------------
-- 5. Test the trained model.

-- Now that the model is trained, one can test it by evaluating it
-- on new samples.

-- The text solves the model exactly using matrix techniques and determines
-- that 
--   corn = 31.98 + 0.65 * fertilizer + 1.11 * insecticides

-- We compare our approximate results with the text's results.

text = {40.32, 42.92, 45.33, 48.85, 52.37, 57, 61.82, 69.78, 72.19, 79.42}

print('id  approx   text')
for i = 1,(#data)[1] do
   local myPrediction = model:forward(data[i][{{2,3}}])
   print(string.format("%2d  %6.2f %6.2f", i, myPrediction[1], text[i]))
end
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GeoPandas是一个开源的Python库,旨在简化地理空间数据的处理和分析。它结合了Pandas和Shapely的能力,为Python用户提供了一个强大而灵活的工具来处理地理空间数据。以下是关于GeoPandas的详细介绍: 一、GeoPandas的基本概念 1. 定义 GeoPandas是建立在Pandas和Shapely之上的一个Python库,用于处理和分析地理空间数据。 它扩展了Pandas的DataFrame和Series数据结构,允许在其中存储和操作地理空间几何图形。 2. 核心数据结构 GeoDataFrame:GeoPandas的核心数据结构,是Pandas DataFrame的扩展。它包含一个或多个列,其中至少一列是几何列(geometry column),用于存储地理空间几何图形(如点、线、多边形等)。 GeoSeries:GeoPandas中的另一个重要数据结构,类似于Pandas的Series,但用于存储几何图形序列。 二、GeoPandas的功能特性 1. 读取和写入多种地理空间数据格式 GeoPandas支持读取和写入多种常见的地理空间数据格式,包括Shapefile、GeoJSON、PostGIS、KML等。这使得用户可以轻松地从各种数据源中加载地理空间数据,并将处理后的数据保存为所需的格式。 2. 地理空间几何图形的创建、编辑和分析 GeoPandas允许用户创建、编辑和分析地理空间几何图形,包括点、线、多边形等。它提供了丰富的空间操作函数,如缓冲区分析、交集、并集、差集等,使得用户可以方便地进行地理空间数据分析。 3. 数据可视化 GeoPandas内置了数据可视化功能,可以绘制地理空间数据的地图。用户可以使用matplotlib等库来进一步定制地图的样式和布局。 4. 空间连接和空间索引 GeoPandas支持空间连接操作,可以将两个GeoDataFrame按照空间关系(如相交、包含等)进行连接。此外,它还支持空间索引,可以提高地理空间数据查询的效率。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值