股票历史数据包含5000多支股票自1990年至今的日线数据,三种格式,sqlite数据库(推荐),csv文件,json文件
已全部上传至CSDN,点上面的链接自行下载,正常会每月更新一次,具体用哪种数据看你自己需求,有日线数据可以很容易组合成周线、月线
另外后续会整理1分钟线,计划每天更新一次,1分钟线可组合5分钟,15分钟,1小时等
tick级分笔数据也会考虑,视情况提供,有需要的朋友留言,请保持关注
python读取、处理和保存sqlite数据库的演示——https://blog.csdn.net/sohoqq/article/details/132534214
python读取、处理和保存csv文件的演示——https://blog.csdn.net/sohoqq/article/details/132541029
python读取、处理和保存json文件的演示——https://blog.csdn.net/sohoqq/article/details/132568589
本篇演示python读取、处理和保存csv文件的方法,这里用的python3.6,其它版本大同小异,上篇演示的sqlite版和这个几乎一样,就是读取和保存的方法不一样,但是也很简单。
csv文件其实是文本文件,excel和记事本都能打开
import os
#要读取数据文件夹下的文件列表,所以要用到的
import pandas as pd
#pandas处理数据超级好用,不是内置的的,需要安装
filepath='E:\股票分析\csv\\'
files=os.listdir(filepath)
# for x in files:
# print(filepath+x)
#这里就取第一个文件来演示
tablename=files[0]#该股票的表名
stockcode=files[0][0:6]#股票代码
stockmarket=files[0][6:8]#股票所在市场
stockname=files[0][8:]
stockname=stockname.replace('.csv','')#股票的名称
print(tablename,stockcode,stockmarket,stockname)
stock1=pd.read_csv(filepath+files[0])
print(stock1)
#--------------------读取数据后的处理,这里演示计算涨跌幅,这里和sqlite、json一样,
stock1['涨跌幅']=(stock1.收盘价-stock1.开盘价)/stock1.开盘价
#这就又要说pandas的方便好用了,直接整列加减乘除,放在新建的一列【涨跌幅】
#print(stock1.涨跌幅)
print(stock1)
#--------------------数据处理后保存
stock1.to_csv(filepath+files[0],index=False)
#因为是原数据上加了一列,现在覆盖到原数据上看看效果
stock1.to_csv(filepath+stockname+'.csv',index=False,columns=['日期时间','开盘价','收盘价','涨跌幅'])
#保存数据的时候有些数据不想要,可以用这个方式,创建新的csv文件,并丢掉不需要的列,columns=[],当然也可以覆盖到原数据文件
可以看到,pandas处理csv文件某些方面比sqlite还要方便,下一篇演示json格式的股票历史数据读写
之后会补充用python制作曲线图的演示,用于股票涨跌,价格走势的查看会很直观,或者某支股票和大盘的涨跌对比
-----