Python炒股自动化(2):获取股票实时数据和历史数据

如果你是一位大佬,看我前面的分享即可,相信你有自己的思路,或者已经有了成熟的策略,你需要的只是API接口来实现你的想法,前面的分享是你需要的,这些是给刚开始接触程序交易的朋友分享的。

前面发了股票程序交易接口的区别和券商接口的申请,隔了很长时间,事也多,人也懒,现在才开始下一步,获取股票实时数据和历史数据。

要实现股票的程序化自动化交易,可以简单分为三步,获取数据、提交订单、查询交易,要实现这些,方法很多,最好用最安全便捷的,还是找券商申请接口来操作。

申请到了API接口,环境的搭建就很简单了,现在的IDE直接傻瓜式安装就可以。你啥都不用管,直接上代码实现功能,至于什么是变量,什么是函数,每个函数的作用,都有哪些参数,程序的原理,量化交易需要哪些基础等等,这些统统不管,现阶段对你不重要,我会在下一系列的plus版中讲到这些,现在就把程序实现过程当做是普通App一样,就把每行代码当做是App中设置的参数,先跑起来再学走路(防杠狗头表情),以前的老司机都是开车上路了才办的驾驶证,没有去驾校考证这一说。

别人在学校学好几年才是个入门的程序员,再学习金融知识,再学习量化知识,再慢慢积累实战经验,十年八年过去了,最终成为一名合格的量化交易从业者。你的目标不一样,没有时间和精力按部就班的,一步一个脚印地深入去学,也没必要和那些资深大佬去对比,现在只是想把自己手工操作的过程,实现程序化自动化,解放双手,避免情绪影响,提高准确性和执行效率。

好了,我们现在先来取实时数据,也就一行代码,这里以平安银行和酱香科技为例。

实时数据 = xtdata.get_full_tick(['000001.SZ', '600519.SH'])
print(实时数据)

Python炒股自动化(2):获取股票实时数据和历史数据

然后,我们再来取历史数据,还是以这两支股票为例,取2024年春节过后,第一个交易日的1分钟K线数据,开高低收四个字段,也是一行代码

历史数据 = xtdata.get_market_data(
    ['open','high','low','close'],
    ['000001.SZ', '600519.SH'],
    '1m',
    '20240219',
    '20240219'
)
print(历史数据)

Python炒股自动化(2):获取股票实时数据和历史数据

结果返回的都是空数据,因为历史数据需要先下载,你可以在客户端上提前批量下载好,也可以在代码中加一行,download_history_data

xtdata.download_history_data2(
    ['000001.SZ', '600519.SH'],
    '1m',
    '20240219',
    '20240219'
)
# 用哪段数据就下载哪段
历史数据 = xtdata.get_market_data(
    ['open','high','low','close'],
    ['000001.SZ', '600519.SH'],
    '1m',
    '20240219',
    '20240219'
)
print(历史数据)

Python炒股自动化(2):获取股票实时数据和历史数据

代码中print就是打印输出,把需要的信息显示出来,让写程序的人看到,机器不需要,它只要有“实时数据”或者“历史数据”这些变量,就可以在下一步分析中利用,图中就是get_full_tick和get_market_data这两个函数向服务器发送请求,取回的数据。

这两个函数有哪些参数,用什么格式,取回的数据是什么格式,怎么用先不管,下一节分析数据的时候,我们让程序知道就行。这些细节都先不要想,先让程序跑起来,我们的目标是先跑起来再学走路(加个狗头表情,别遇到杠精,这段记得划掉)。

注意这里我用的变量名是中文,之后的教程分享也是,以容易理解为主,先不说我自己有“变量命名困难综合症”,初级教程,怎么简单怎么来,上手实战优先,自己用的程序,不是和别人合作,不用定什么标准,贴地飞行,弯道超车,光脚的不怕穿裤衩的,板砖破武术,片刀砍气功

今天的分享就到这里,对股票量化程序化自动交易感兴趣的朋友可以关注我,有任何相关问题也可以留言讨论或者私信与我交流

-----

Python数据分析与应用是指使用Python编程语言进行数据分析和应用的过程。其中,从数据获取到可视化是数据分析的一个重要环节。 首先,从数据获取方面,可以通过多种方式获得数据。可以使用Python中的各种库来获取数据,比如requests库用于发送http请求获取在线数据,或者使用pandas库中的read_csv等函数读取本地存储的数据文件。通过这些方法可以将数据加载到Python数据结构中,如DataFrame或Series。 接下来,对获取数据进行数据清洗和数据预处理。这一步骤中,可以使用Python中的pandas库进行数据清理和数据转换。使用pandas库可以对数据进行筛选、去除重复值、填充缺失值等操作,以便后续的分析和应用。 然后,进行数据分析和应用。在Python中,可以使用各种数据分析和机器学习库,如numpy、scikit-learn、statsmodels等,进行数据分析和建模。可以进行数据聚合、统计分析、机器学习等任务,以获得对数据的更深入的认识,并且可以应用到具体领域中。 最后,可以利用Python中的数据可视化库,如matplotlib、seaborn、plotly等,将分析结果可视化。通过可视化可以更加直观地展示数据的特征和变化,帮助观察者更好地理解数据分析的结果。 总之,Python数据分析与应用的过程包括从数据获取到可视化的步骤。只有经过数据获取数据清洗、数据分析和数据可视化等环节,才能得到对数据的深入理解,并将这些结果应用到具体的领域中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

财云量化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值