炒股自动化:申请官方API接口,散户也可以
python炒股自动化(0),申请券商API接口
python炒股自动化(1),量化交易接口区别
Python炒股自动化(2):获取股票实时数据和历史数据
Python炒股自动化(3):分析取回的实时数据和历史数据
Python炒股自动化(4):通过接口向交易所发送订单
Python炒股自动化(5):通过接口查询订单,查询账户资产
量化交易与 AI 量化机器人:股票投资新选择
量化选股是一种基于数学和统计方法的股票投资策略,它使用复杂的数学模型和算法来分析和选择股票。这种方法强调数据驱动和系统化的决策过程,与传统基于主观判断和基本面分析的选股方法相对。量化选股策略通常基于多因子模型,这些因子可能包括市值、估值、动量、质量、波动率等。
AI量化机器人是量化选股的一种具体实现,它利用人工智能技术,特别是机器学习和深度学习,来分析大量金融数据,识别市场趋势,预测股价变动,并据此提出买卖建议。AI量化机器人通过算法自动处理和解析历史数据、新闻报道、财务报表等,以揭示股市的潜在规律。与传统的量化选股相比,AI量化机器人在数据的基础之上,会叠加一些算法对数据进行加工,AI算法基本上都有非常高的非线性成分,能够更准确地捕捉市场中的复杂关系和模式。
AI量化全自动交易机器人产品设计理念是用人工智能创新科技推动中国证券市场的发展,让极大多数证券市场投资者,无论是否会编程都能够非常简单的根据自己的最理想的操作思路和盈利模式用非常方便的方式组合为或编写为全自动程序化AI交易策略。可根据历史回测年化收益率,可供用户挑选再组合使用,以及自定义交易程序编写功能,用户可以轻松实最理想的交易思想转化成为AI全自动化程序化交易策略,轻松组合成为一个独立的自动交易机器人。
量化交易和AI量化机器人具有以下几个方面的特点:
纪律性:根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
系统性:具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
套利思想:定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
概率取胜:一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
量化交易和AI量化机器人能够帮助投资者克服人性的弱点,如贪婪和恐惧,实现理性的、稳定的、严格的长期自动操作。它们具有非常精通的技术,内设多个半成品量化模型,历史回测收益率非常高,实盘年化收益更高,跑赢99%的股民。