目录
一、相关概念
1. 路径长度:一个图中,从一个顶点到另一个顶点的路径上所经过的边的数目
2. 最短路径:图中一个顶点到另一个顶点的多条路径中路径长度最短的那条路径,其路径长度称为最短路径长度或最短距离
3. 带权路径长度:在一个带权图中,一个顶点到另一个顶点的一条路径上所经过边的权值之和
4. 带权图最短路径:带权图中一个顶点到另一一个顶点的多条路径中带权路径长度值最小的那条路径,其带权路径长度叫作最短路径长度或最短距离
5. Dijkstra算法主要特点:从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到终点为止
6. Dijkstra算法思想:设置两个顶点的集合S和T,S中存放已找到最短路径的顶点,T中存放当前还未找到最短路径的顶点。
初始状态时,S中只包含源点,设为v,然后从T中选择到源点v路径长度最短的顶点u加入到S中,S中每加入一个新的顶点u,都要修改源点v到T中剩余顶点的当前最短路径长度值,T中各顶点的新的当前最短路径长度值为原来的当前最短路径长度值与从源点过顶点u到达该顶点的路径长度中的较小者。此过程不断重复,直到T中的顶点全部加入到S中为止。
二、具体举例(求上海到各个地点的距离)
1. 设置三个数组:dist、visited、path(其数组长度为顶点长度)
数组dist:记录 起始顶点到各个顶点的距离;
数组visited:标志数组等同于上面描述中的 集合S,用于标志顶点;
数组path:存放 从起始点 到其余各顶点的最短路径上到目标顶点的前一顶点的下标。
2. 设置 minDis 记录最短距离,初始值设置为
minDis = Integer.MAX_VALUE;
3. 设置 v 为起始顶点的下标,设置 u 为当前还未找到最短路径的顶点集合中具有最短距离的顶点的下标
4. 过程:(以上海为起始点)
1)将三个数组初始化:
dist数组:将与起始点有关联的顶点的边的距离赋值给 dist,将没有关联的顶点的 dist 设置为 Integer.MAX_VALUE;
visited数组:初始化设置为0,当寻找到最短路径后设置为1;
path数组:将与起始点有关联的顶点的 path 设置为起始点的下标,将没有关联的顶点的 path 设置为 -1;