最短路径Dijkstra算法(java邻接矩阵版)

目录

一、相关概念

二、具体举例(求上海到各个地点的距离)

三、代码实现


一、相关概念

1. 路径长度:一个图中,从一个顶点到另一个顶点的路径上所经过的边的数目

2. 最短路径:图中一个顶点到另一个顶点的多条路径中路径长度最短的那条路径,其路径长度称为最短路径长度或最短距离

3. 带权路径长度:在一个带权图中,一个顶点到另一个顶点的一条路径上所经过边的权值之和

4. 带权图最短路径:带权图中一个顶点到另一一个顶点的多条路径中带权路径长度值最小的那条路径,其带权路径长度叫作最短路径长度或最短距离

5. Dijkstra算法主要特点:从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近未访问过的顶点的邻接节点,直到终点为止

6. Dijkstra算法思想:设置两个顶点的集合S和T,S中存放已找到最短路径的顶点,T中存放当前还未找到最短路径的顶点。

初始状态时,S中只包含源点,设为v,然后从T中选择到源点v路径长度最短的顶点u加入到S中,S中每加入一个新的顶点u,都要修改源点v到T中剩余顶点的当前最短路径长度值,T中各顶点的新的当前最短路径长度值为原来的当前最短路径长度值与从源点过顶点u到达该顶点的路径长度中的较小者。此过程不断重复,直到T中的顶点全部加入到S中为止。

二、具体举例(求上海到各个地点的距离)

 1.  设置三个数组:dist、visited、path(其数组长度为顶点长度)

数组dist:记录 起始顶点到各个顶点的距离

数组visited:标志数组等同于上面描述中的 集合S,用于标志顶点;

数组path:存放 从起始点 到其余各顶点的最短路径上到目标顶点的前一顶点的下标

 2.  设置 minDis 记录最短距离,初始值设置为 

minDis = Integer.MAX_VALUE;

3.  设置 v 为起始顶点的下标,设置 u 为当前还未找到最短路径的顶点集合中具有最短距离的顶点的下标

 4. 过程:(以上海为起始点)

1)将三个数组初始化:

 dist数组:将与起始点有关联的顶点的边的距离赋值给 dist,将没有关联的顶点的 dist 设置为 Integer.MAX_VALUE;

visited数组:初始化设置为0,当寻找到最短路径后设置为1;

path数组:将与起始点有关联的顶点的 path 设置为起始点的下标,将没有关联的顶点的 path 设置为 -1;

好的,以下是地铁最短路径 Dijkstra 算法Java 代码实现: ``` import java.util.*; public class Dijkstra { private static final int INF = Integer.MAX_VALUE; // 无穷大 private static int[][] graph; // 地铁路线图 private static int[] dist; // 起点到各站点的距离 private static boolean[] visited; // 是否已经找到最短路径 /** * dijkstra算法求起点到其他站点的最短距离 * @param start 起点 */ public static void dijkstra(int start) { int n = graph.length; dist = new int[n]; visited = new boolean[n]; // 初始化距离数组 for (int i = 0; i < n; i++) { dist[i] = INF; } dist[start] = 0; // 循环n次,每次找出一个顶点的最短路径 for (int i = 0; i < n; i++) { int minDist = INF; int u = -1; // 找出当前未确定最短路径的距离最小的点 for (int j = 0; j < n; j++) { if (!visited[j] && dist[j] < minDist) { minDist = dist[j]; u = j; } } if (u == -1) { break; // 所有点均已找到最短路径 } visited[u] = true; // 更新与u相邻的点的最短距离 for (int v = 0; v < n; v++) { if (!visited[v] && graph[u][v] != INF && dist[u] + graph[u][v] < dist[v]) { dist[v] = dist[u] + graph[u][v]; } } } } public static void main(String[] args) { // 以下为测试数据,实际使用时需要根据实际地铁路线图进行修改 graph = new int[][]{ {0, 4, 2, INF, INF}, {4, 0, 1, 5, INF}, {2, 1, 0, 1, INF}, {INF, 5, 1, 0, 3}, {INF, INF, INF, 3, 0} }; dijkstra(0); System.out.println(Arrays.toString(dist)); // 输出起点到各站点的最短距离 } } ``` 以上代码中,我们通过一个邻接矩阵来表示地铁路线图,其中 INF 表示两个站点之间没有直接连接。在 dijkstra 方法中,我们先初始化起点到各站点的距离为无穷大,然后以此找出距离起点最近的未确定最短路径的点,将其标记为已经确定最短路径,同时更新与该点相邻的点的最短距离。重复该过程,直到所有点均已找到最短路径,最终得到起点到各站点的最短距离数组。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值