28、无标签数据聚类分析:从 k-means 到评估方法

无标签数据聚类分析:从 k-means 到评估方法

1. 聚类分析简介

在之前的学习中,我们使用监督学习技术构建机器学习模型,这些数据的答案(类别标签)是已知的。而聚类分析则属于无监督学习技术,它能帮助我们在事先不知道正确答案的数据中发现隐藏结构。聚类的目标是在数据中找到自然分组,使得同一簇内的项目彼此之间比与不同簇的项目更相似。

聚类分析具有探索性,以下是一些有助于将数据组织成有意义结构的概念:
- 利用流行的 k-means 算法寻找相似性中心。
- 采用自下而上的方法构建层次聚类树。
- 使用基于密度的聚类方法识别对象的任意形状。

2. 使用 k-means 按相似性对对象进行分组

k-means 是最流行的聚类算法之一,在学术界和工业界都有广泛应用。聚类技术能让我们找到相似对象的组,这些对象彼此之间的关联比与其他组的对象更紧密。例如,在商业应用中,聚类可用于按不同主题对文档、音乐和电影进行分组,或者根据共同的购买行为找到具有相似兴趣的客户,作为推荐引擎的基础。

2.1 使用 scikit-learn 进行 k-means 聚类

k-means 算法易于实现,并且与其他聚类算法相比,计算效率很高。它属于基于原型的聚类类别,每个簇由一个原型表示,对于连续特征通常是质心(平均值),对于分类特征是中心点(最具代表性或到该簇所有其他点距离最小的点)。

k-means 虽然擅长识别球形簇,但它的一个缺点是需要事先指定簇的数量 k。不合适的 k 值可能导致聚类性能不佳。后续我们会讨论肘部法和轮廓图,这些技术有助于评估聚类质量,确定最佳的簇数量 k。

数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值