概率论

概率论基础回顾

概率的认识

存在随机变量 X ,假设X是离散的, p(X=x0) 代表事件 x0 发生的概率。
问题来了,假设 X 是连续型随机变量,这里概率怎么来理解?

累计分布函数

ϕ(x)=P(xx0)

  • ϕ(x) 一定是单增函数
  • min(ϕ(x))=0max(ϕ(x))=1
  • 将值域为 [0,1] 的某函数 y=f(x) 看成 y 事件的累积概率
  • y=f(x)可导,则 p(x) 为某概率密度函数

思考一下,累积分布函数有啥用?

古典概率

    古典概率通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。

实际问题:

某班上有50位同学,至少有2人生日相同的概率是多少?

条件概率

p(A|B)=p(AB)p(B)

全概率公式

p(A)=ip(A|B)p(B)

贝叶斯公式

p(Bi|A)=p(A|Bi)p(Bi)jp(A|Bj)p(Bj)

实际问题:

8支步枪中有5支已校准过,3支未校准。一名射手用校准过的枪射击,中靶概率为0.8;用未校准的枪射击,中靶概率为0.3;现从8支枪中随机取一支射击,结果中靶。求该枪是已校准过的概率。

分布

离散型分布

伯努利分布、二项分布、几何分布和负二项分布、泊松分布
http://blog.csdn.net/zlbflying/article/details/47777943

连续型分布

均匀分布、指数分布、正态分布、 Beta 分布
这里写图片描述

思考:

二项分布->泊松分布?

n很大,p很小的二项分布,可近似为泊松分布

泊松分布与指数分布的联系?

泊松分布是单位时间内独立事件发生次数的概率分布,指数分布是独立事件的时间间隔的概率分布。

这么多分布,意义在哪?

极限定理

切比雪夫不等式

设随机变量X的期望为 μ ,方差为 σ2 ,对于任意正数 ϵ ,有:

P{|Xnμ|ϵ}σ2ϵ

切比雪夫不等式说明, X 的方差越小, 事件{|Xnμ|ϵ}发生的概率越大。即: X 取的值基本上集中在期望μ附近。

大数定理

X1 , X2 , X3 ,……, Xi ……是独立随机变量序列, E(Xi) = μ , Var(Xi)=σ2 ,令 X¯¯¯n=n1ni=1Xi ,那么对任意的 ϵ >0,当n-> 时,

P(|X¯¯¯nμ|>ϵ)>0

证明过程可参考切比雪夫不等式

思考:
大数定理有啥用?
Eg:计算积分 I(f)=10f(x)dx ,假设 f(x) 异常复杂,怎么计算呢?
采用蒙特卡洛方法进行近似计算,生成[0,1]上独立的均匀随机变量,即 X1,X2,Xn ,然后计算

I^(f)=1ni=1nf(Xi)

根据大数定理,上述结果接近于 E[f(x)]

中心极限定理

设随机变量 X1 , X2 , X3 ……互相独立,服从同一分布,并且具有相同的期望 μ 和方差 σ2 ,则随机变量

Yn=ni=1Xinμnσ

的分布收敛到标准正态分布。

中心极限定理的表述有很多种,这种我认为是比较好理解的,在实际问题处理中,很多随机变量分布都被认为是服从正态分布的,比如说线性回归中误差的分布。

实例:
大量存在的两点分布Bi(1,p),其中,Bi发生的概率为0.01,即p=0.01。取其中的n个,使得发生的个数除以总数的比例落在区间(0.0099,0.0101),则n至少是多少?

关于估计

样本的矩

k 阶原点矩:

Ak=1ni=1nXki

k 阶中心距
Mk=1ni=1n(XiX¯¯¯)k

矩估计的原理

样本的 k 阶矩等于总体的k阶矩,注意这里的样本矩并没有除以 n1

实例:

在正态分布的总体中采样得到 n 个样本:X1,X2,X3……,估计该总体的均值和方差。

极大似然估计

http://blog.csdn.net/zlbflying/article/details/48474837

实例:

若给定一组样本 X1,X2,X3 …… Xn ,已知它们来自于高斯分布 N(μ,σ) ,试估计参数 μ , σ

假设检验

假设检验不再分享,原因在于在论文中使用到的概率较小,且假设检验主要用在对总体估计结果是否可信的判断上,大家参考概率论书籍即可。

卡方检验

这里单拿出卡方检验,卡方检验是在试验中用途非常广泛的一种检验方法,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。

χ2=()2

实例:

假设你是一家赌场的老板,你怀疑有个赌客对骰子做了手脚。你已经将赌客抓了起来并没收了骰子。现在你必须证明他的骰子是有问题的。然后你掷了60次,记录如下:
点数 1 2 3 4 5 6
频数 8 9 19 6 8 10
用上述结果计算一下卡方统计量的值等于多少?

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 概率论是一门研究随机现象的数学分支,主要研究随机事件发生的可能性以及其规律和性质。它以数学理论和方法为基础,通过概率模型和统计方法来描述和解决不确定性问题。 在概率论中,我们通过使用概率来量化和描述事件的可能性。概率是一个介于0和1之间的数值,表示事件发生的可能性大小。当概率为0时,表示事件不可能发生;当概率为1时,表示事件肯定会发生。 概率论广泛应用于各个领域,如金融、医学、工程、统计学等。在金融领域,概率论可用于预测股票价格的涨跌、风险评估和投资决策等。在医学研究中,概率论可以用于分析疾病发生的风险和确定治疗效果等。在工程领域,概率论可以用于可靠性评估、故障分析和优化设计等。 苏淳是 CSDN 的一位作者,他在概率论领域有很多的技术文章和分享。他的文章通常涵盖概率模型、随机过程、统计分析等主题,帮助读者理解和应用概率论知识。他的文章内容深入浅出,适合不同层次的读者阅读。 总的来说,概率论是一门重要的数学学科,通过概率模型和统计方法来研究随机现象的规律。苏淳在该领域的技术文章和分享能够帮助读者更好地理解和应用概率论知识。 ### 回答2: 苏淳是一位在CSDN(中国软件开发者社区)活跃的博主,专注于概率论领域的相关文章和讲解。概率论是数学的一个分支,研究的是随机事件的发生概率及其规律。 苏淳在其博客中通过通俗易懂的语言和生动的例子,将复杂的概率理论解释得深入浅出。他从基础概念入手,如试验、事件、样本空间等,逐步引导读者理解概率的概念和计算方法。同时,他还介绍了概率分布和概率密度函数等更加高级的概念,如正态分布、泊松分布等。 在实际应用方面,苏淳着重讨论了概率论在统计学、机器学习和风险分析等领域的应用。他通过真实的案例和数据分析方法,展示了概率论如何在这些领域中辅助分析和决策。这为读者提供了实际问题中如何运用概率论的思维的指导。 除了博客文章,苏淳还定期开设概率论的在线讲座和交流活动。在这些活动中,他分享了更多的概率论知识,并与听众进行互动和讨论。这为学习者提供了与专家交流和提问的机会,加深了对概率论的理解和应用能力。 总而言之,苏淳是一个在CSDN上专注于概率论的博主,他通过生动的例子和通俗易懂的语言向读者介绍了概率论的基本概念和计算方法,并提供了概率论在实际问题中的应用指导。通过他的博客文章和在线讲座,读者能够更好地理解概率论并运用其思维解决实际问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值