离散型概率分布之一——二项分布

本文介绍了概率分布的基础概念,并重点解析了二项分布的特点及其计算方法。主要包括二项分布的定义、适用条件、概率计算公式及数学期望等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习机器学习的过程中,不可避免会遇到很多概率统计知识,大多都是记得自己以前学过,但是具体知识点怎么都想不起来的。所以打算做一个系列的整理,首先从最简单的二项分布开始。

由于知识点呈递进关系,就不强行列一个目录出来了。


出于从最基础的知识点开始学起的想法,首先要了解的知识点是,什么是分布?具体来说,应该是什么是概率分布?


简单来说,就如上面的柱状图,图中每一个小柱子的高度,即为一个对应变量的概率分布,而整个统计图将所有随机变量对应的概率呈现出来,即为事件所有可能发生结果的概率分布。

了解完了什么是概率分布,接下来就可以开始了解概率分布分哪几种了。简单来说,按照随机变量的数据类型,可以分为两种,一种是离散型随机变量对应的概率分布,称为离散型概率分布,今天要讲的二项分布,以及后面要讲的泊松分布和几何分布,就都是离散型概率分布。 另一种,就是连续型概率分布,也即连续型随机变量对应的概率分布,典型的连续型概率分布,就是大名鼎鼎的正态分布,后面的博客中也将做出相应整理。


二项分布是什么?

对于这个问题,我想转化成——什么样的分布才是二项分布?

满足以下三个条件的分布,就是二项分布:

(1)做某件事情的次数(也叫试验次数)是固定的,用n表示。例如,抛硬币3次,求婚101次等。

(2)每一次事件都有两个可能的结果(成功,或者失败)。例如每次求婚都有两种可能结果,被接受(成功),被拒绝(失败)。

(3)每一次成功的概率都是相等的,成功的概率用p表示。

你感兴趣的是成功x次的概率是多少。那么就可以用二项分布的公式快速计算出来了。



知道了二项分布是什么,那么如何计算符合二项分布事件的概率呢?

很简单,用如下公式就可以计算出来。


其中,p表示成功的概率,x表示成功的次数。



由于前面一篇博客讲了一下如何计算数学期望,所以这里也提一下如何计算二项分布的数学期望。

二项分布的数学期望E(x)=np

同样也提一下二项分布的标准差 


参考资料

[1]https://baike.baidu.com/item/%E4%BA%8C%E9%A1%B9%E5%88%86%E5%B8%83/1442377?fr=aladdin

[2]https://www.zhihu.com/question/36214010/answer/208718886

[3]https://baike.baidu.com/item/%E6%A6%82%E7%8E%87%E5%88%86%E5%B8%83/828907?fr=aladdin


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值