Scala支持continuation了!

    Scala 2.8有一项非常重大的进步,那就是支持了continuation(http://en.wikipedia.org/wiki/Continuation)。这玩意儿不知道怎么翻译成中文,叫“连续”吗?怪难听的。不过不管叫什么,它都是一个相当令人着迷的语言特性。


    我最早是在Scheme那儿通过一个叫Call-with-current-continuation(简写成call/cc,http://en.wikipedia.org/wiki/Call-with-current-continuation)的神奇函数认识它的。我曾经以为和coroutine差不多,最近因为关注continuation-based web framework才算有点明白,这是多么肤浅的认识啊!最著名的continuation-based web开发框架当属用Smalltalk实现的Seaside(

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
支持向量机(Support Vector Machines,SVM)是一种常用的监督学习算法,可以用于分类和回归问题。在SVM中,我们试图找到一个超平面,将数据分为两个不同的类别。SVM的目标是最大化不同类别之间的间隔,这个间隔被称为“最大间隔”,同时也可以考虑使用核函数来处理非线性问题。 在Scala中,可以使用Spark MLlib库中的SVM实现来实现SVM算法。下面是一个简单的Scala代码示例,使用Spark MLlib库中的SVM对回头客问题进行分类: ```scala import org.apache.spark.ml.classification.LinearSVC import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler} import org.apache.spark.ml.linalg.Vectors import org.apache.spark.sql.{DataFrame, SparkSession} // 创建SparkSession val spark = SparkSession.builder() .appName("SVM for Customer Retention") .master("local[*]") .getOrCreate() // 读取数据 val data = spark.read.option("header", "true").option("inferSchema", "true").csv("path/to/data") // 数据预处理 val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(data) val assembler = new VectorAssembler().setInputCols(Array("feature1", "feature2", "feature3")).setOutputCol("features") val transformed = assembler.transform(data).select("features", "indexedLabel") // 划分训练集和测试集 val Array(trainingData, testData) = transformed.randomSplit(Array(0.8, 0.2)) // 创建SVM模型 val svm = new LinearSVC().setMaxIter(10).setRegParam(0.1) // 训练模型 val model = svm.fit(trainingData) // 预测测试集 val predictions = model.transform(testData) // 评估模型 val evaluator = new BinaryClassificationEvaluator().setLabelCol("indexedLabel").setRawPredictionCol("rawPrediction") val accuracy = evaluator.evaluate(predictions) println(s"Accuracy = ${accuracy}") ``` 在上面的代码中,我们首先读取回头客数据集,并使用`StringIndexer`将标签列转换为数值类型。然后使用`VectorAssembler`将所有特征列合并为一个向量列,并划分训练集和测试集。接着,我们创建一个`LinearSVC`对象作为SVM模型,并使用训练集进行训练。最后,我们使用测试集进行预测,并使用`BinaryClassificationEvaluator`计算模型的准确度。 希望这个示例可以帮助你使用Scala和Spark MLlib实现SVM算法解决回头客问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

soloist

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值