机器学习
文章平均质量分 89
机器学习理论与实践
Solomon1588
这个作者很懒,什么都没留下…
展开
-
跨平台Caffe及I/O模型与并行方案(三)
3. Caffe I/O模型 Caffe支持GPU加速模式,这种异构程序设计对于I/O模型的效率有更高的要求。Caffe通过引入多重预缓冲来弥补内存与显存带宽的较大差距,使用主存管理自动机控制内存与显存的数据传输与同步,从而达到隐藏传输时间、提高计算资源利用率以及保持数据一致性的目标。Caffe还支持单机多GPU的数据并行,多线程I/O模型为其并行方案提供支持。本章将从原理探究与框架分析原创 2016-08-23 15:40:11 · 4602 阅读 · 0 评论 -
图像数据集构建调研报告
数据集是由一组数据组成的集合,用于对提出算法进行训练和测试。在图像领域,针对不同应用,数据集构造不同,体现在规模,图片尺寸等性质上。图像应用主要有检测、分类和分割三大类。本文将介绍数据集的构建以及辅助生成工具。1. 数据集的特点 在物体检测方面,数据集规模适中,图片范围相对较大。自然图像中,以PASCAL VOC2007为例(The 2005 PASCAL Visual Object Cla原创 2016-07-29 23:17:41 · 11834 阅读 · 0 评论 -
深度学习与生成式模型
Main points 阐述生成式模型的求解目标(联合分布),应用方式(判别、生成分布的样本)。 阐释深度学习与生成式模型的关系; 调研深度学习在生成式模型方面的发展,分类阐述(求解方法); 相较于传统生成式模型,深度生成式模型的特点、优势; Outline: 1. 生成式模型的定义[wiki](joint probability distribut原创 2016-09-12 12:49:07 · 16171 阅读 · 0 评论 -
生成式对抗网络GAN研究进展(一)
【前言】 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论文之间的联系与区别,揭示生成式对抗网络的研究脉络。 涉及的论文有: [1] Goodfe原创 2016-09-14 13:16:15 · 51082 阅读 · 1 评论 -
生成式对抗网络GAN研究进展(二)——原始GAN
【前言】 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论文之间的联系与区别,揭示生成式对抗网络的研究脉络。 涉及的论文有: [1] Goodfe原创 2016-09-15 12:43:07 · 40874 阅读 · 0 评论 -
生成式对抗网络GAN研究进展(三)——条件GAN
【前言】 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论文之间的联系与区别,揭示生成式对抗网络的研究脉络。 本文涉及的论文有: [1] Good原创 2016-09-16 17:30:09 · 33390 阅读 · 3 评论 -
生成式对抗网络GAN研究进展(四)——Laplacian Pyramid of Adversarial Networks,LAPGAN
【前言】 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论文之间的联系与区别,揭示生成式对抗网络的研究脉络。 本文涉及的论文有: [1] Good原创 2016-09-17 13:35:34 · 10119 阅读 · 3 评论 -
生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN
【前言】 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展。作者按照GAN主干论文、GAN应用性论文、GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论文之间的联系与区别,揭示生成式对抗网络的研究脉络。 本文涉及的论文有: Goo原创 2016-09-18 13:54:32 · 41595 阅读 · 5 评论 -
不同学习任务的评价方法
图像识别分析数据集是一个多分类数据集,在预测结果评估过程中与需要注意一些问题[Everingham M]: 1. 在图像分类任务中,仅用一个标签标示样本,而图像中可能包含多个类别的物体。面对这种问题,可以借鉴图像检索的评估思路,使用top @k 模型对模型进行评估,只要前k个标签中有一个正确的,就算分类正确。 2. 每类物体的样本数量分布不均匀,避免使用准确率(accuracy)等对原创 2016-07-29 23:50:15 · 2925 阅读 · 0 评论 -
Generative Modeling of Convolutional Neural Networks,生成式CNNs
生成式CNNs标签: CNN,Generative Modeling ,Machine Learning, MCMC工作思路 Step 1: 找到切入点,了解生成式模型,及其与CNNs的关系 对照论文原文与PPT内容,了解总体框架; 找到key word,以此为突破点; 生成式模型在CNNs中的应用。 Step2: 阐述生成式模型的背景、物理含义、优缺点,解决问题的一般原创 2016-05-03 23:45:38 · 1368 阅读 · 0 评论 -
《机器学习系统设计》之应用scikit-learn做文本分类(下)
前言: 本系列是在作者学习《机器学习系统设计》([美] WilliRichert)过程中的思考与实践,全书通过Python从数据处理,到特征工程,再到模型选择,把机器学习解决问题的过程一一呈现。书中设计的源代码和数据集已上传到我的资源:http://download.csdn.net/detail/solomon1558/8971649 第3章通过词袋模型+K均值聚类实现相关文原创 2015-08-15 15:41:55 · 4202 阅读 · 1 评论 -
《机器学习系统设计》之应用scikit-learn做文本分类(上)
前言: 本系列是在作者学习《机器学习系统设计》([美] WilliRichert)过程中的思考与实践,全书通过Python从数据处理,到特征工程,再到模型选择,把机器学习解决问题的过程一一呈现。书中设计的源代码和数据集已上传到我的资源:http://download.csdn.net/detail/solomon1558/8971649 第3章通过词袋模型+K均值聚类实现原创 2015-08-12 22:27:16 · 4308 阅读 · 1 评论 -
LARS回归算法的几何意义
LARS算法的几何意义 1 LARS算法简介 Efron于2004年发表在Annals of Statistics的文章LEAST ANGLE REGRESSION中提出LARS算法,其核心思想是提出一种新的solution path(求解路径),即在已经入选的变量中,寻找一个新的路径,使得在这个路径上前进时,当前残差与已入选变量的相关系数都是相同的,直到找出新的比当前残差相原创 2014-11-09 18:25:59 · 8948 阅读 · 2 评论 -
机器学习综述——机器学习理论基础与发展脉络
机器学习研究mailuo 摘要本文主要参考中科院自动化研究所复杂系统与智能科学实验室王珏研究员《关于机器学习的讨论》,讨论机器学习的描述,理论基础,发展历史以及研究现状。关键字:机器学习,科学依据,发展脉络 0引言 20世纪90年代初,当时的美国副总统提出了一个重要的计划——国家信息基本设施计划(NationalInformation Infrastruct原创 2014-11-04 23:29:50 · 13952 阅读 · 4 评论