ArcGIS分省提取各市、县

数据:全国的矢量边界(省、市、县)

提取各省边界

打开省界的属性表,NAME_1字段是省的名字。

使用“分析工具—>提取分析—>分割”,即可提取。

 

分割后的各省边界数据

提取各省的市、县边界

由于省界和市、县的边界不完全一致,所以先用市、县边界融合出省界,再分割出市、县。

此处以市为例,县的提取同理。

融合出省界

打开市界的属性表,NAME_1为省所在的字段。

 使用“数据管理工具—>制图综合—>融合”工具,即可得到各省边界。

### 使用 ArcGIS 提取级别地理信息 #### 准备工作 为了有效提取级别的地理信息,需准备相应的基础数据集。这通常包括高分辨率的地表覆盖数据和精确的行政区划边界矢量文件。 - **地表覆盖数据**:可从 GlobeLand30 获取最新的 N49 和 N50 数据,这些数据具有较高的空间分辨率(30m × 30m),适用于详细的土地利用分析[^2]。 - **行政区划矢量**:用于定义研究区域范围内的具体行政单位界限。对于武汉市而言,应当获得其完整的行政区划矢量地作为叠加分析的基础资料。 #### 地理处理操作 ##### 数据预处理 在正式开始之前,先要确保所有使用的数据都处于相同的坐标系下,并且进行了必要的格式转换: 1. 将下载到的土地覆被栅格数据导入至 ArcGIS 中; 2. 对于矢量形式的行政区划边界,则应确认其几何类型为多边形(Polygon),以便后续的空间查询与统计运算能够顺利执行。 ##### 裁剪与重分类 针对特定的研究需求,可能还需要进一步裁剪原始栅格数据以减少不必要的计算负担: ```python import arcpy from arcpy import env env.workspace = "D:/data" # 设定输入输出路径 input_raster = "landcover.tif" output_clipped_raster = "clipped_landcover.tif" mask_layer = "wuhan_boundary.shp" arcpy.Clip_management(input_raster, "#", output_clipped_raster, mask_layer) ``` 接着可以根据实际应用场景的要求对土地类别进行简化或重新编码,从而更好地满足专题制的需求。 ##### 统计汇总 最后一步就是基于上述准备工作来进行具体的统计数据收集了。通过 Spatial Join 工具可以轻松实现这一点: ```python # 进行空间连接 spatial_join_output = "spatial_joined_data.shp" arcpy.SpatialJoin_analysis(target_features="districts.shp", join_features=output_clipped_raster, out_feature_class=spatial_join_output) # 计算各区内不同用地类型的总面积 summary_statistics_table = "area_summary.dbf" arcpy.Statistics_analysis(in_table=spatial_join_output, out_table=summary_statistics_table, statistics_fields=[["Shape_Area", "SUM"]], case_field="LU_CODE") ``` 以上代码片段展示了如何使用 Python Scripting 结合 ArcPy 库来自动化整个过程中的部分环节,提高工作效率的同时也保证了结果的一致性和准确性[^4]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值