自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 论文阅读 | PNAS-MOT: Multi-Modal Object Tracking With Pareto Neural Architecture Search

本文提出PNAS-MOT(基于Pareto神经架构搜索的多模态目标跟踪方法),针对自动驾驶中多目标跟踪(MOT)存在的单传感器不可靠与高 latency(延迟)问题,采用跟踪-检测(tracking-by-detection)范式,融合图像与LiDAR点云双模态数据,通过帕累托优化的约束神经架构搜索(NAS),在保证较高精度(KITTI基准测试中MOTA达89.59%,接近SOTA水平)的同时,实现低延迟(边缘设备如Jetson Nano上 latency低于80ms,高性能GPU上最低至8ms。

2025-10-16 18:51:29 921 1

原创 论文阅读 | AAAI2024|DC-NAS: Divide-and-Conquer Neural Architecture Search for Multi-Modal Classification

为解决现有多模态分类神经架构搜索(NAS-MMC)方法训练耗时久、计算成本高的问题,研究团队提出——一种基于进化算法的高效NAS-MMC方法;该方法通过k折分层抽样将完整数据集拆分为k个小规模子集与1个完整集,对应将种群划分为k+1个子种群(k个子种群在小规模子集上进化,1个子种群在完整集上进化),并借助两个专用知识库实现子种群间的知识交换,以解决部分数据训练导致的次优融合模型问题;在MM-IMDB(多标签电影类型分类)、NTU RGB-D(动作识别)、EgoGesture(动态手势识别)

2025-09-29 22:57:24 463

原创 PC-DARTS对DARTS改进部分代码解读

与 DARTS 相同:一个 cell 有若干中间节点(内部节点),每个内部节点连接来自前面所有节点的边(edges),每条边对应一个 MixedOp(含多个候选算子)。:每次前向后将不同来源(part/bypass)的通道充分打散,下一轮抽到 “part” 的通道会换一批,避免固定“好通道/坏通道”。直觉:β 让“哪条边更重要”也能被学习约束,避免 “在某条边上选 skip 就能几乎零代价地把特征穿过去” 的偏置。:在把各条边的 MixedOp 输出相加之前,再做一次 “边的重要性 softmax”。

2025-09-09 17:28:49 714

原创 fusion nas相关论文阅读

该研究提出了一种多模态融合神经架构搜索方法(MUFASA),能够在电子健康记录(EHR)建模中同时自动搜索模态专属子网络和多模态融合策略。电子健康记录通常包含**结构化(代码)和非结构化(自由文本)**数据的混合,具有稀疏和不规则的纵向特征。例如,电子健康记录(EHR)通常包含:(1)情境特征,如患者的年龄和性别;(2)纵向分类特征,如手术代码、药物代码和病症代码;(3)纵向连续特征,如血压、体温和心率;(4)纵向自由文本临床笔记,这些笔记通常篇幅较长且包含大量医学术语。

2025-09-09 17:28:05 768

原创 NAS之锦标赛进化搜索策略

在深入步骤之前,我们首先要理解几个进化算法中的基本术语,以及它们在NAS场景下的具体含义:为什么用锦标赛选择?因为它在选择压力(Selection Pressure)和种群多样性(Population Diversity)之间取得了很好的平衡。锦标赛选择的过程就像举办一场小型的“比武大会”:通过调整 的大小,我们可以很方便地控制选择压力:定义搜索空间 (Search Space):创建初始种群:这是整个流程中最耗时的一步。这个循环会一直进行,直到达到预设的代数(例如2000代)或满足某个终止条件。假设我们

2025-09-09 17:27:20 778

原创 论文阅读 | 2024 |LLMatic: Neural Architecture Search via Large Language Models and Quality Diversity Opt

大型语言模型(LLMs)已成为强大的工具,能够完成广泛的任务。它们的能力涵盖多个领域,其中一个产生重大影响的领域是代码生成。在此,该文章提议利用 LLMs 的编码能力,对定义神经网络的代码进行有意义的变体生成。同时,质量多样性(QD)算法以发现多样化且稳健的解决方案而闻名。通过将 LLMs 的代码生成能力与 QD 解决方案的多样性和稳健性相结合,该文章提出了一种神经架构搜索(NAS)算法 ——LLMatic。

2025-09-09 17:24:17 907

原创 论文阅读 | EG-NAS: Neural Architecture Search with Fast Evolutionary Exploration(AAAI-2024)

变量/参数符号类型详细含义迭代次数ttt整数当前迭代轮次(起始值为0,t1t+1t1表示下一轮迭代)当前协方差矩阵CtC_tCt​矩阵第ttt轮迭代时的协方差矩阵,维度与架构参数α\alphaα一致(通常为高维方阵)下一轮协方差矩阵Ct1C_{t+1}Ct1​矩阵公式计算的输出,用于第t1t+1t1轮迭代的高斯采样进化路径权重系数c1c_1c1​超参数(标量)控制“进化路径”对CtC_tCt​。

2025-09-09 17:23:43 838

原创 DARTS改进方法论文概述

在原始的DARTS中,当搜索阶段的结构过于复杂时,可微分方法可能会偏好跳跃连接,因为这能加速前向 / 反向传播,这种偏好会导致搜索到的架构中出现过多的跳跃连接,这不仅增加了结构的冗余度,还使网络难以优化,进而导致 DARTS 方法的性能不尽如人意。被送入通道融合补偿模块(CFCM),在该模块中,通过充分评估通道重要性,能够获得平衡的语义信息。在所提出的𝓁-DARTS中,引入了部分通道连接的概念,通过对超级网络的一个子集进行随机采样,来解决网络架构探索中的冗余问题。

2025-07-16 19:27:02 1085

原创 论文阅读 | ICLR 2019 |DARTS(Differentiable Architecture Search)

题目:DARTS(Differentiable Architecture Search)论文:[https://doi.org/10.1016/j.patcog.2023.109913](https://doi.org/10.1016/j.patcog.2023.109913)代码:[https://github.com/chanchanchan97/ICAFusion](https://github.com/chanchanchan97/ICAFusion)年份:2019。

2025-07-16 17:32:35 714

原创 NAS的一些疑惑记录

合理性:NAS将搜索范围限定于架构,是为了在计算可行性和设计目标之间取得平衡,符合领域内的标准范式。参数的作用:参数通过训练优化,是架构性能的“实现者”,而NAS通过评估训练后的性能来反推架构的优劣。未来扩展:若需同时优化架构和参数,可能需要更复杂的框架(如联合搜索架构超参数和训练策略),但这会显著增加计算成本,目前并非NAS的主流方向。

2025-07-01 00:04:38 1019

原创 NAS——搜索策略

在神经架构搜索(Neural Architecture Search, NAS)中,基于代理模型(Surrogate Model)的搜索策略是一类以构建性能预测模型为核心的方法。其核心思想是:由于直接训练和评估一个神经网络非常耗时(尤其是在大数据集上),我们可以用一个“代理模型”去预测一个候选架构的性能(如准确率),然后利用这个模型引导搜索,从而降低计算代价并提高搜索效率。代理模型fA→RfA→R其中,AA是架构空间,R\mathbb{R}R。

2025-06-29 18:53:26 915

原创 【NAS】搜索空间、搜索策略入门

神经网络架构搜索(Neural Atchitecture Search,NAS)是一种通过计算机程序和算法自动化设计人工神经网络(尤其是深度神经网络)结构的方法,其核心目标是替代传统依赖专家经验的手动设计模式,实现神经网络结构的自动化优化。其核心主要有三个部分:搜索空间、搜索策略、性能评估。

2025-06-29 14:43:58 809

原创 论文阅读之——Semantic Scholar

Semantic Scholar 是由美国 Allen Institute for AI(AI2) 开发的一个学术搜索引擎,旨在帮助研究人员快速获取高质量的学术信息。它结合了人工智能和自然语言处理技术,让用户可以更智能地浏览文献、发现引用、理解研究主题等。官方网站:https://www.semanticscholar.org。

2025-06-21 13:55:42 1347 5

原创 无人机小麦热红外、多光谱图像数据介绍

本文主要介绍由两款无人机:大疆M210、大疆M350,分别搭载XT2热红外相机、AMS-14多光谱相机采集的小麦图像。所有图像存储于西北农林科技大学云盘中,仅供内部使用。目录中文件夹前缀为拍摄日期,例如:5_9热红外即为5月9日采集的热红外图像。多光谱图像目录中:数字文件夹为每次拍摄无人机所处的位置信息,包括经纬度和高度。images目录中为采集的jpg图像。热红外目录中为采集到的可见光RGB图像和热红外图像,均为jpg格式。ms文件夹中为经过初步处理的多光谱图像:将位置信息融入到图像中。

2025-05-29 03:19:18 1232 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除