套娃的艺术:Meta Learning

套娃的艺术:Meta Learning

写在前面

早在读研期间就对Meta Learning有所耳闻,听说有个学习框架可以“学习如何调参”,当时还戏言,以后是不是还会有“学习如何学习如何调参”的框架,并可以继续无穷套娃下去。最近因为一些原因,或多或少接触到了Meta Learning,我并不想深入研究其数学原理,只觉它思路清奇,所以去学习了李宏毅老师的《Meta Learning》课程,并阅读了Meta Learning的代表方法之一MAML的paper,觉得挺有趣的。本文仅为笔者入门Meta Learning时产生的理解笔录,希望为后来的同学们学习套娃技术带来一点帮助,本文的脉络与李宏毅老师的课程一致,感兴趣的同学可以去补原课程


1. Introduction

1.1 Meta Learning是什么

一般我们谈 Machine Learning(机器学习),总是基于特定的任务场景,去定义模型结构和目标函数,然后用某种优化方法,学习最佳的参数,使得损失最小。一旦场景和任务发生变化,一般都要重新训练。比如针对“狗”训练的分类器,不能拿来区分不同的“猫”。为了解决这个问题,常见的做法是finetune或迁移学习。

Meta Learning(元学习) 提供了一种新思路:“学习去学习”(Learn to Learn)。它认为模型在经历了足够多的任务学习后,能基于现有的知识,学到“学习”这件事的本质,从而在新任务到来时,能快速达到最优,包括且不限于:

  • 学习能力的快速迁移:让“狗狗”分类器快速学习分类以前没见过的动物;
  • 处理Few-Shot问题:对小样本任务有效;
  • 处理Cold-Start问题:对推荐系统中的长尾效应有效。

这里列出Machine LearningMeta Learning 的区别,便于理解。

输入 输出 训练目的 基本步骤
Machine Learning 一个task: 数据与标签的pair ( X , Y ) (X, Y) (X,Y) f : f ( X ) = Y f: f(X)=Y f:f(X)=Y 找到一个最能拟合 ( X , Y ) (X, Y) (X,Y)的模型 f f f 1. 准备好数据集 ( X , Y ) (X, Y) (X,Y)
2. 计算loss
3. 迭代优化 f f f
Meta Learning 很多task: 数据与标签的pair { ( X , Y ) 1 , ( X , Y ) 2 , ⋯   } \{(X, Y)_1, (X, Y)_2, \cdots\} { (X,Y)1,(X,Y)2,} F : F ( { X s , Y s } ) = f F:F(\{X_s, Y_s \} )=f F:F({ Xs,Ys})=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值