深度学习记录第一天--神经网络

一直没搞懂神经网络到底是个什么玩意,今天看了斯坦福的深度学习基础教程才算知道神经网络的那个经典的三层结构。以下是原文:
以监督学习为例,假设我们有训练样本集 这里写图片描述,那么神经网络算法能够提供一种复杂且非线性的假设模型这里写图片描述 ,它具有参数 这里写图片描述,可以以此参数来拟合我们的数据。

为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示:


这里写图片描述


这个“神经元”是一个以这里写图片描述及截距+1为输入值的运算单元,其输出为这里写图片描述,其中函数这里写图片描述被称为“激活函数”。在本教程中,我们选用sigmoid函数作为激活函数
这里写图片描述
可以看出,这个单一“神经元”的输入-输出映射关系其实就是一个逻辑回归(logistic regression)。
虽然本系列教程采用sigmoid函数,但你也可以选择双曲正切函数(tanh):
这里写图片描述
以下分别是sigmoid及tanh的函数图像:
这里写图片描述
这里写图片描述
tanh(z) 函数是sigmoid函数的一种变体,它的取值范围为[-1,1] ,而不是sigmoid函数的[0,1] 。
注意,与其它地方(包括OpenClassroom公开课以及斯坦福大学CS229课程)不同的是,这里我们不再令x_0=1 。取而代之,我们用单独的参数 b来表示截距。
最后要说明的是,有一个等式我们以后会经常用到:如果选择这里写图片描述,也就是sigmoid函数,那么它的导数就是f’(z) = f(z) (1-f(z)) (如果选择tanh函数,那它的导数就是f’(z) = 1- (f(z))^2 ,你可以根据sigmoid(或tanh)函数的定义自行推导这个等式。


神经网络模型


所谓神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入(这里是指前一层神经元的输出在经过带入函数(比如sigmoid函数)求值之后的值可以是后一层神经元的输入,例如一个神经元的输入值为:value=这里写图片描述)*x+这里写图片描述,则可以把sigmoid(value)当做下一层的输入。例如,下图就是一个简单的神经网络:
这里写图片描述
我们使用圆圈来表示神经网络的输入,标上“+1”的圆圈被称为偏置节点,也就是截距项。神经网络最左边的一层叫做输入层,最右的一层叫做输出层(本例中,输出层只有一个节点)。中间所有节点组成的一层叫做隐藏层,因为我们不能在训练样本集中观测到它们的值(这就是标准的三层结构,其中隐藏层可以有多个层组成)。同时可以看到,以上神经网络的例子中有3个输入单元(偏置单元不计在内),3个隐藏单元及一个输出单元。
我们用这里写图片描述来表示网络的层数,本例中 \textstyle n_l=3 ,我们将第L层记为这里写图片描述,于是L1是输入层,这里写图片描述即L3是输出层。本例神经网络有参数这里写图片描述(注:W(1)是指第一层的权重,b(1)是指第一层的偏置项),其中 这里写图片描述(下面的式子中用到)是第这里写图片描述层第j单元与第 \textstyle l+1 层第i单元之间的联接参数(其实就是连接线上的权重,注意标号顺序),这里写图片描述 是第l+1 层第 i 单元的偏置项。因此在本例中,这里写图片描述这里写图片描述(注:R3*3是指W1是一个3*3结构的连线,共有9条,也即第一层的权值有9个系数)。注意,没有其他单元连向偏置单元(即偏置单元没有输入),因为它们总是输出 “+1”。同时,我们用这里写图片描述表示第 这里写图片描述 层的节点数(偏置单元不计在内)。
我们用这里写图片描述表示第这里写图片描述层第 i 单元的激活值(这里的激活值又叫做输出值,个人觉得叫激活值不好理解,称之为激励结果即激励产生的结果比较好理解)。当l=1 时,这里写图片描述,也就是第 i 个输入值(输入值的第 i 个特征)。对于给定参数集合 W,b ,我们的神经网络就可以按照函数这里写图片描述来计算输出结果。本例神经网络的计算步骤如下:


这里写图片描述


注:在上面的神经网络图例中,在给定参数W,b之后,只要计算出这里写图片描述就可以计算出我们的目标函数这里写图片描述,对于上面的计算步骤分别计算出第二层的3个单元的输出值,然后再计算出第三层的输出值(激励结果)即这里写图片描述,达到我们的目的,任务完成!


上面是计算了各层各单元的激活值即输出值(激励结果),接下来我们要计算各层各单元的输入值,从神经网络上面看,我们想要的各层的输入值其实就是把与该单元连接的线即权值求和然后与输入向量做乘法,例如:要计算第二层第一个单元(方便起见将该点记为P1)的输入值,只要计算X1–P1,X2–P1,X3–P1的连线上的权值乘以X(输入)然后加上偏置”+1”–P1再求和即可。看下面


我们用这里写图片描述表示第 l 层第 i 单元输入加权和(包括偏置单元),比如, 这里写图片描述,则 这里写图片描述
注:这里的f函数选用的依然是sigmoid函数,将输入值这里写图片描述带入f函数即可得到各层各单元的输出值这里写图片描述


这样我们就可以得到一种更简洁的表示法。这里我们将激活函数f(.) 扩展为用向量(分量的形式)来表示,即这里写图片描述,那么,上面的等式可以更简洁地表示为:

这里写图片描述

我们将上面的计算步骤叫作前向传播。回想一下,之前我们用这里写图片描述表示输入层的激活值,那么给定第 l 层的激活值这里写图片描述后,第 l+1 层的激活(激励结果)这里写图片描述就可以按照下面步骤计算得到:


这里写图片描述

将参数矩阵化,使用矩阵-向量运算方式,我们就可以利用线性代数的优势对神经网络进行快速求解。


目前为止,我们讨论了一种神经网络,我们也可以构建另一种结构的神经网络(这里结构指的是神经元之间的联接模式),也就是包含多个隐藏层的神经网络。最常见的一个例子是 n_l 层的神经网络,第 1 层是输入层,第 n_l 层是输出层,中间的每个层 l 与层 l+1 紧密相联。这种模式下,要计算神经网络的输出结果,我们可以按照之前描述的等式,按部就班,进行前向传播,逐一计算第 L_2 层的所有激活值,然后是第 L_3 层的激活值,以此类推,直到第这里写图片描述层。这是一个前馈神经网络的例子,因为这种联接图没有闭环或回路。
神经网络也可以有多个输出单元。比如,下面的神经网络有两层隐藏层: L_2 及 L_3 ,输出层 L_4 有两个输出单元。


这里写图片描述


要求解这样的神经网络,需要样本集这里写图片描述,其中这里写图片描述 。如果你想预测的输出是多个的,那这种神经网络很适用。(比如,在医疗诊断应用中,患者的体征指标就可以作为向量的输入值,而不同的输出值这里写图片描述 可以表示不同的疾病存在与否。)

———-以下是要思考的问题

Questiions:
1.本文在计算目标函数这里写图片描述时都是假定参数W,b已经给出,现在思考一下W和b是什么东西(有没有几何意义),如何找到最佳的W,b使得目标函数最优化?
2.思考如果找到了是函数最优化的W,b,那么只需要将数据X带入目标函数即可求得具体的数值,该数值可以用来完成哪些功能?
3.神经网络选用输入层,隐藏层,输出层这种结构为了什么?
http://deeplearning.stanford.edu/wiki/index.php/神经网络

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值