机器学习--python归一化特征值

在机器学习算法训练中,为了处理不同取值范围的特征值,通常需要进行数值归一化,将其转化为0-1区间内的值。文章介绍了如何进行归一化处理,并给出了一组数据的示例及对应的Python实现代码,展示了如何对数据集中的某一列数值进行归一化操作。
摘要由CSDN通过智能技术生成

在机器学习的算法训练中,有很多数据的特征值不止一个,特征值中有些属性的数字过大,从而对计算结果的影响太大,但是实际情况是每个属性都同等重要,这时候就要处理这种不同取值范围的特征值,通常采用数值归一化,将取值范围处理为0-1或者-1-1之间。
将任意取值范围的特征值转化为0–1区间内的值,公式如下:

newValue=(oldValue-min)/(max-min)

其中oldValue为原始数据
min、max分别是原始数据里最小、最大值
例如:有一组数据如下
400
134000
20000
32000
归一化的过程是:
400归一化之后的值newValue=(400-400)/(134000-400)
134000归一化之后的值newValue=(134000-400)/(134000-400)
20000归一化之后的值newValue=(20000-400)/(134000-400)
32000归一化之后的值newValue=(32000-400)/(134000-400)
上python代码:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值