图像增强方法

图像增强概念

一般的图像增强方法根据增强处理过程所在的空间不同,可分为基于空域和频域的方法。基于空域的方法直接对图像进行处理,包括对比度增强和图像平滑;基于频域的方法是在图像的某种变换域内对图像的变换系数进行修正,然后再反变换到原来的空域,得到增强的图像。

主要目的:
一、是为了改善图像的视觉效果,提高图像的清晰度;

二、是针对给定图像的应用场合,突出某些感兴趣的特征,抑制不感兴趣的特征,以扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。

基于空间域的图像增强:直接作用于图像像素的增强方法。

1、灰度变换增强

灰度变换主要针对独立的像素点进行处理,由输入像素点的灰度值决定相应的输出像素点的灰度值,通过改变原始图像数据所占的灰度范围而使图像在视觉上得到改善。

1.1 线性灰度增强

线性灰度增强,将图像中所有点的灰度按照线性灰度变换函数进行变换。在曝光不足或过度的情况下,图像的灰度可能局限在一个很小的灰度范围内,这时图像可能会很模糊不清。利用一个线性单值函数对图像内的每一个像素做线性拓展,将会有效地改善图像的视觉效果。

基本原理:假设一幅图像f(x,y)变换前的的灰度范围是[a, b],希望变换后g(x,y)灰度范围拓展或者压缩至[c, d],则灰度线性变换函数表达式为:
在这里插入图片描述
通过调整a,b,c,d,的值可以控制线性变换函数的斜率,从而达到灰度范围的拓展或压缩。

1.2 分段线性灰度增强

分段线性灰度增强可将需要的图像细节灰度级扩展,增强对比度,将不需要的图像细节灰度级压缩。

基本原理:假设输入图像f(x,y)的灰度为0M级,增强后图像g(x,y)的灰度级0N级,区间[a, b]、[c,d]分别为源图像和增强图像的某一灰度区间。分段线性变换函数为:

在这里插入图片描述
a,b,c,d取不同的值时,可得到不同的效果。

(1)若a=c,b=d,灰度变换函数为一条斜率为1的直线,增强图像与源图像相同;

(2)若a>c,b<d,源图像中灰度值在区间[0,a]与[b,M]中的动态范围减小,而源图像在区间[a,b]间的动态范围增加,从而增强中间范围的对比度。

(3)若a<c,b>d, 则源图像在区间[0,a]与[b,M]的动态范围增加,而源图像在区间[a,b]间的动态范围减小。

由此可见,通过调整a,b,c,d,可以控制分段的斜率,从而对任意灰度区间进行拓展或者压缩。

1.3 非线性灰度增强

显而易见,当用非线性函数对图像灰度进行映射时,可以实现图像的非线性灰度增强。

基本原理:常用的非线性灰度增强方法有对数函数非线性变换和指数函数非线性变换。

(1)对数函数非线性变换

对图像做对数非线性变换时,变换函数为:

在这里插入图片描述
通过调整a,b,c,可以调整曲线的位置与形状。利用此变换,可以使输入图像的低灰度范围得到扩展,高灰度范围得到压缩,以使图像分布均匀。

(2)指数函数非线性变换

对图像做指数函数非线性变换时,变换函数为:
在这里插入图片描述
通过调整a,b,c,可以调整曲线的位置与形状。利用此变换,可以使输入图像的低灰度范围得到扩展,高灰度范围得到压缩,以使图像分布均匀。
2、直方图增强

图像直方图描述了一幅图像的灰度级分布情况,我们从图像的灰度级的分布形态可以提供图像信息的很多特征。因此,我们通过改变图像的直方图的形态也就是改变图像的对比度了。常用的方法有直方图均衡化和直方图规定化。

在进行直方图相关操作之前,我们肯定得知道直方图长什么样,也就是直方图统计。从数学上理解,图像直方图实际就是图像各灰度值统计特性与图像灰度值之间的函数关系,它统计的是一幅图像中各个灰度级出现的次数或者概率。从图形上说,它是一个二维图,用横坐标表示各个像素点的灰度级r;纵坐标表示对应灰度级的像素个数或者概率:
在这里插入图片描述
算法实现步骤:

(1)获取源图像的宽和高;

(2)逐行扫描图像的像素点,并进行灰度统计;

(3)计算各个灰度级的概率密度。

2.1 直方图均衡化

2.2 直方图规定化

3.图像平滑
一、根据空间滤波增强目的可分为:平滑滤波和锐化滤波;
二、根据空间滤波的特点可分为:线性滤波和非线性滤波。

1.图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
2.消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。
3.平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。
4.关于滤波器,一种形象的比喻法是:我们可以把滤波器想象成一个包含加权系数的窗口,当使用这个滤波器平滑处理图像时,就把这个窗口放到图像之上,透过这个窗口来看我们得到的图像。
滤波目的:
1、消除图像中混入的噪声。2、为图像识别抽取出图像特征。
滤波要求:

1、不能损坏图像轮廓及边缘 。2、图像视觉效果应当更好。
滤波器的种类有很多, 常见的滤波器包含6种滤波方法:

盒式滤波、平滑处理1线性滤波之——盒式滤波(方框滤波)

均值滤波、平滑处理2线性滤波之——均值滤波

高斯滤波、平滑处理3线性滤波之——高斯滤波

中值滤波、平滑处理4非线性滤波之——中值滤波

双边滤波、平滑处理5非线性滤波之——双边滤波

导向滤波、平滑处理6——引导滤波/导向滤波(Guided Filter)

基于频域的图像增强
*5、频率域增强
低通滤波,高通滤波,带阻滤波,同态滤波;

*6、彩色增强

真彩色增强,假彩色增强,伪彩色增强;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值