深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization

本文是关于深度学习中UFLDL Tutorial的最新学习笔记,重点讲解了Vectorization的概念及其在Linear Regression中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 Vectorization 简述

Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算。
为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的区别于其他通用语言的地方就是MATLAB可以用最直观的方式实现矩阵运算,MATLAB的变量都可以是矩阵。
通过Vectorization,我们可以将代码变得极其简洁,虽然简洁带来的问题就是其他人看你代码就需要研究一番了。但任何让事情变得simple的事情都是值得去做的。

关于Vectorization核心在于代码的实现,下面我们直接通过Linear Regression和Logistic Regression的练习来看看如何Vectorization。

2 Linear Regression的Vectorization

主要的不同点就是计算cost function和gradient的方法。
先看看一般的通过循环计算的方法:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值