【机器学习】【数学推导】极大似然估计MLE

目录

 

一、什么是极大似然估计(MLE)

二、举例说明

三、数学推导

四、结论


一、什么是极大似然估计(MLE)

极大似然估计(maximum likelihood estimation),是一个利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值的方法

二、举例说明

举例一个关于MLE经常用的一个例子来说明MLE要做的事情:

假设一个盒子里有未知数量、未知比例的黑色球、白色球,现在我们想了解一下两种颜色球的比例,但是我们只能进行下记步骤:

  1. 从盒子中随机拿出一个球

  2. 观察并记录球的颜色

  3. 将球放回盒子

  4. 将盒子内的球摇匀(为了要符合独立同分布, Independent and identically distributed, IID)

  5. 重复上述5个步骤

假设进行了10次重复操作后的结果如下:

第几次实验球的颜色
1黑色
2白色
3白色
4黑色
5白色
6白色
7白色
8黑色
9白色
10黑色

根据图表可以看出,10次实验中,有4次是黑色(40%),6次是白色(60%)

单纯从这个实验结果直观来看,盒子中黑色和白色球的比例应该为:60%:40%

但是在实际工作中,样本量大、特征也不仅仅是颜色一种属性,所以没办法直接获取到结果。但是只要我们清楚了这个背后的数学原理,就可以通过公式,很方便快捷的计算出这个结果,从而对参数值进行优化

对于这个例子来说,假设抽取到白球的概率为p,则黑球的概率为(1 - p),因为抽样的结果已经出现了,那根据这个后验结果,计算出出现这个结果可能性最大的p,就是极大似然估计要做的事情,也就是就是求得使下记式子值最大的p,就是最接近真实白球数目占比的概率:

\Theta _{MLE} = argmax(p^{6}(1 - p)^{4}) 

对于不同的p,式子的结果值如下:

p的值对应的结果
0%0
10%0.0000006561
20%0.0000262144
30%0.0001750329
40%0.0005308416
50%0.0009765625
60%0.0011943936
70%0.0009529569
80%0.0004194304
90%0.0000531441
100%0

为了更清晰的看到变化情况,折线图如下:

 从折线图中可以清晰的看出,当p = 0.6时,式子的值是最大的,所以白球最大可能的的占比为60%,与直观结果相同

 

三、数学推导

本篇只对常见的一维高斯分布进行数学推导

这里重新列并修改一下第二章节中的公式:

  1.  需要求解的式子为: \Theta _{MLE} = argmax(p^{7}(1 - p)^{3}) = argmax \prod_{i = 1}^{N}p(x_{i | \Theta }))  

  2. 特征列表为: X = (x_{1}, x_{2}, x_{3}, ... , x_{n})^{T} = \begin{pmatrix}x_{1}^{T} \\ x_{2}^{T} \\ x_{3}^{T} \\ ... \\ x_{n}^{T} \end{pmatrix}_{N \times P}

  3. 概率服从高斯分布 : x \sim N(\mu , \sigma ^{2})

  4. 高斯分布公式 : p(x) = \frac{​{1}}{\sqrt{2\pi }\sigma } e^{(-\frac{(x - \mu )^2}{2\sigma^2})} = \frac{​{1}}{\sqrt{2\pi }\sigma } exp(-\frac{(x - \mu )^2}{2\sigma^2})

 

为了简化连乘运算,对第一个式子两边同时取对数,利用log的特性,将连乘转换为连加,并将高斯公式带入,式子可以转换为(为了显示清晰,暂时隐藏了argmax):

log\Theta _{MLE} = log\prod_{i = 1}^{N}p(x_{i | \Theta })) = \sum_{i = 1}^{N}log(p(x_{i | \Theta })) \\= \sum_{i = 1}^{N}log[\frac{​{1}}{\sqrt{2\pi }\sigma } exp(-\frac{(x_ - \mu )^2}{2\sigma^2})] \\= \sum_{i = 1}^{N}[log \frac{​{1}}{\sqrt{2\pi }} + log \frac{​{1}}{\sigma} -\frac{(x_{i} - \mu )^2}{2\sigma^2}]

对于高斯分布,重点是求\small \mu\small \sigma,所以上面的式子对于\small \mu\small \sigma求偏导,并令偏导为0后,求\small \mu\small \sigma的推导过程如下:

\small \mu :

\small \mu求导得:

 \frac{\partial }{\partial \mu }= \frac {\partial \sum_{i = 1}^{N}[log \frac{​{1}}{\sqrt{2\pi }} + log \frac{​{1}}{\sigma} -\frac{(x_{i} - \mu )^2}{2\sigma^2}]}{ \partial \mu}\\= \sum_{i = 1}^{N}(-2\times \frac{(x_{i} - \mu )}{2\sigma^2}\times -1)\\= \sum_{i = 1}^{N} \frac{(x_{i} - \mu )}{\sigma^2}

令上式等于0,得到:

\small \sum_{i = 1}^{N} \frac{(x_{i} - \mu )}{\sigma^2} = 0

\small \sum_{i = 1}^{N} (x_{i} - \mu ) = 0

因为\small \mu与n无关,所以\small \mu求和可以转换为: \small \sum_{i = 1}^{N} x_{i} - N\mu = 0

所以对于\small \mu的估计值为: \small \mu = \frac{\sum_{i = 1}^{N} x_{i}}{N}

即样本中x的平均值

\small \sigma

\frac{\partial }{\partial \sigma } = \frac {\partial \sum_{i = 1}^{N}[log \frac{​{1}}{\sqrt{2\pi }} + log \frac{​{1}}{\sigma} -\frac{(x_{i} - \mu )^2}{2\sigma^2}]}{ \partial \sigma} \\ \\= \frac {\partial \sum_{i = 1}^{N}[log \frac{​{1}}{\sqrt{2\pi }} - log \sigma -\frac{(x_{i} - \mu )^2}{2\sigma^2}]}{ \partial \sigma} \\ \\= \sum_{i = 1}^{N}[- \frac {1}{\sigma} - \frac{(x_{i} - \mu )^2}{2}\times (-2)\times \sigma^{-3}] \\ \\= \sum_{i = 1}^{N}[- \frac{1}{\sigma} + (x_{i} - \mu )^{2}\sigma ^{-3}]

令上式等于0,得到:

\sum_{i = 1}^{N}[- \frac{1}{\sigma} + (x_{i} - \mu )^{2}\sigma ^{-3}] = 0

 

等式两边同时 × \sigma^3得到:

\sum_{i = 1}^{N}[- \sigma ^2 + (x_{i} - \mu )^{2}] = 0

同样,\sigma ^2与i无关,所以式子可以修改为:

N\sigma ^2 = \sum_{i = 1}^{N}(x_{i} - \mu )^{2}

所以对于\sigma ^2的估计值为:\sigma ^2 = \frac {\sum_{i = 1}^{N}(x_{i} - \mu )^{2}}{N}

 

上面两个对\small \mu\sigma ^2的估计值中,\small \mu为无偏估计,即与真值无偏差;但是\sigma ^2为有偏估计,无偏估计应该将分母修改为(N - 1)

有无偏估计的证明如下:

\small \mu _{mle}无偏估计证明 :E[\mu _{mle}] = E[\frac{1}{N} \sum_{i = 1}^{N}x_i] = \frac{1}{N} \sum_{i = 1}^{N}[x_i] = \frac{1}{N} \sum_{i = 1}^{N} \mu = \mu

\sigma _{mle} ^2有偏估计证明:

E[\sigma _{mle}^2] \\ \\= E[\frac {1}{N} \sum_{i = 1}^{N}(x_i - \mu_{mle} )^2)] \\ \\= E[\frac {1}{N}\sum_{i = 1}^{N}x_{i}^{2} - \frac {1}{N}\sum_{i = 1}^{N}2x_i\mu_{mle} + \frac {1}{N}\sum_{i = 1}^{N}\mu_{mle} ^2] \\ \\= E[\frac {1}{N}\sum_{i = 1}^{N}x_{i}^{2} - \frac {1}{N}\sum_{i = 1}^{N}2x_i\mu_{mle} + \frac {1}{N}\sum_{i = 1}^{N}\mu_{mle} ^2] \\ \\= E[\frac {1}{N}\sum_{i = 1}^{N}x_{i}^{2} - 2\mu _{mle}^2 + \mu _{mle}^2 \\ \\= E[\frac {1}{N}\sum_{i = 1}^{N}x_{i}^{2} - \mu _{mle}^2] \\ \\= E[(\frac {1}{N} \sum_{x = i}^{N}x_i^2 - \mu ^2) - (\mu _{mle}^2 - \mu ^2)] \\ \\= E(\frac {1}{N} \sum_{x = i}^{N}(x_i^2 - \mu ^2)) - E(\mu _{mle}^2 - \mu ^2) \\ \\= \frac {1}{N}\sum_{x = i}^{N}E(x_i^2 - \mu ^2) - E(\mu _{mle}^2 - \mu ^2) \\ \\= \frac {1}{N}\sum_{x = i}^{N}(E(x_i^2) - \mu ^2) - (E(\mu _{mle}^2) - E(\mu ^2)) \\ \\= \frac {1}{N}\sum_{x = i}^{N}(E(x_i^2) - \mu ^2) - (E(\mu _{mle}^2) - \mu ^2) \\ \\= \frac {1}{N}\sum_{x = i}^{N}(E(x_i^2) - \mu ^2) - (E(\mu _{mle}^2) - E^2 (u_{mle}))

其中:

E(x_i^2) - \mu ^2 = Var(x_i) = \sigma ^2

E(\mu _{mle}^2) - E^2 (u_{mle}) = Var[\mu _{mle}] \\ \\= Var[\frac {1}{N} \sum_{i = 1}^{N}x_i] \\ \\= \frac {1}{N^{2}} \sum_{i = 1}^{N} Var[x_i] \\ \\= \frac {1}{N^{2}} \sum_{i = 1}^{N} \sigma ^2 \\ \\= \frac {1}{N^{2}} \times N \times \sigma ^2 \\ \\= \frac {\sigma ^2}{N}

将这两个式子带入到刚刚的结论中,得到下记式子:

\sigma _{mle} ^ 2 = \frac {1}{N}\sum_{i = 1}^{N}(E(x_i^2) - \mu ^2) - (E(\mu _{mle}^2) - E^2 (u_{mle})) \\ \\= \frac {1}{N}\sum_{i = 1}{N}\sigma ^2 - \frac {\sigma ^2}{N} \\ \\= \sigma ^2 - \frac {\sigma ^{2}}{N} \\ \\= \frac {(N - 1)}{N} \sigma ^2

所以: \small \sigma ^2 = \frac {N}{N - 1}\sigma_{mle}^{2}

 

四、结论

\small \mu_{mle} = \mu = \frac{\sum_{i = 1}^{N} x_{i}}{N}

\sigma_{mle} ^2 = \frac {\sum_{i = 1}^{N}(x_{i} - \mu )^{2}}{N}

\sigma ^2 = \frac {N}{N - 1} \sigma _{mle}^{2} = \frac {N}{N - 1} \times \frac {\sum_{i = 1}^{N}(x_{i} - \mu )^{2}}{N} = \frac {\sum_{i = 1}^{N}(x_{i} - \mu )^{2}}{N - 1}

 

下篇文章更新多维高斯分布的数学推理

 

  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值