堆是一种特殊的完全二叉树,它要求每个节点都大于或等于它的一个子节点
由于二叉树的性质可知
1,一个节点的父节点(i)的位置在:(i-1) / 2
2,一个节点的坐子节点(i)的位置为:2i + 1
3,一个节点的右子节点(i)的位置为:2i + 2
由于堆的特殊要求,所以我们插入一个新节点,和删除根节点(这俩种操作在堆中的执行效率很高),需要对堆进行重建。
可以借助数组,或列表实现堆的基本数据结构。
以ArrayList为例
1,插入一个新节点时,首先把新节点插入集合末尾,然后判断其和其父节点的大小,如果大于父节点,那么将它与它的父节点交换,交换列表中索引位置,依次循环,如果不再大于父节点,则堆已经重建完成。
2,删除根节点,删除后,先把列表的最后一个元素作为堆的跟节点,然后将它和它的子节点中大的节点做比较,交换列表中索引位置,依次循环,如果不再小于任何一个它的子节点。那么堆则构建完成。
package 堆;
public class Heap<E extends Comparable> {
private java.util.ArrayList<E> list
= new java.util.ArrayList<E>();
public Heap() {
}
public Heap(E[] objects) {
for(int i = 0; i<objects.length; i++) {
add(objects[i]);
}
}
public void add(E newObject) {
list.add(newObject);
int currentIndex = list.size() - 1;
while(currentIndex > 0) {
int parentIndex = (currentIndex - 1)/2;
if(list.get(currentIndex).compareTo(list.get(parentIndex)) > 0) {
E temp = list.get(currentIndex);
list.set(currentIndex, list.get(parentIndex));
list.set(parentIndex, temp);
} else {
break;
}
currentIndex = parentIndex;
}
}
public E remove() {
if(list.size() == 0) {
return null;
}
E removedObject = list.get(0);
list.set(0, list.get(list.size() - 1));
list.remove(list.get(list.size() - 1));
int currentIndex = 0;
while(currentIndex < list.size()) {
int leftChildIndex = 2 * currentIndex + 1;
int rightChildIndex = 2*currentIndex + 2;
if(leftChildIndex >=list.size())
break;
int maxIndex = leftChildIndex;
if(rightChildIndex < list.size()) {
if(list.get(maxIndex).compareTo(list.get(rightChildIndex)) < 0) {
maxIndex = rightChildIndex;
}
}
if(list.get(currentIndex).compareTo(list.get(maxIndex)) < 0) {
E temp = list.get(maxIndex);
list.set(maxIndex, list.get(currentIndex));
list.set(currentIndex, temp);
} else {
break;
}
}
return removedObject;
}
public int getSize() {
return list.size();
}
}