java语言程序设计(进阶篇)读书笔记 之 数据结构每天一小练--堆(一)

堆是一种特殊的完全二叉树,它要求每个节点都大于或等于它的一个子节点


由于二叉树的性质可知

1,一个节点的父节点(i)的位置在:(i-1) / 2

2,一个节点的坐子节点(i)的位置为:2i + 1

3,一个节点的右子节点(i)的位置为:2i + 2


由于堆的特殊要求,所以我们插入一个新节点,和删除根节点(这俩种操作在堆中的执行效率很高),需要对堆进行重建。


可以借助数组,或列表实现堆的基本数据结构。

以ArrayList为例

1,插入一个新节点时,首先把新节点插入集合末尾,然后判断其和其父节点的大小,如果大于父节点,那么将它与它的父节点交换,交换列表中索引位置,依次循环,如果不再大于父节点,则堆已经重建完成。

2,删除根节点,删除后,先把列表的最后一个元素作为堆的跟节点,然后将它和它的子节点中大的节点做比较,交换列表中索引位置,依次循环,如果不再小于任何一个它的子节点。那么堆则构建完成。

package 堆;

public class Heap<E extends Comparable> {
    
	private java.util.ArrayList<E> list
            = new java.util.ArrayList<E>();
	
	public Heap() {
    	
    }
    
    public Heap(E[] objects) {
        for(int i = 0; i<objects.length; i++) {
        	add(objects[i]);
        }
    }
    
    public void add(E newObject) {
    	list.add(newObject);
    	int currentIndex = list.size() - 1;
    	
    	while(currentIndex > 0) {
    	    int parentIndex = (currentIndex - 1)/2;
    	    if(list.get(currentIndex).compareTo(list.get(parentIndex)) > 0) {
    	    	E temp = list.get(currentIndex);
    	    	list.set(currentIndex, list.get(parentIndex));
    	    	list.set(parentIndex, temp);
    	    } else {
    	    	break;
    	    }
    	    
    	    currentIndex = parentIndex;
    	}
    }
    
    public E remove() {
    	if(list.size() == 0) {
    		return null;
    	}
    	
    	E removedObject = list.get(0);
    	list.set(0, list.get(list.size() - 1));
    	list.remove(list.get(list.size() - 1));
    	
    	int currentIndex = 0;
    	while(currentIndex < list.size()) {
    		int leftChildIndex = 2 * currentIndex + 1;
    		int rightChildIndex = 2*currentIndex + 2;
    		
    		if(leftChildIndex >=list.size())
    			break;
    		int maxIndex = leftChildIndex;
    		if(rightChildIndex < list.size()) {
    			if(list.get(maxIndex).compareTo(list.get(rightChildIndex)) < 0) {
    				maxIndex = rightChildIndex;
    			}
    		}
    		if(list.get(currentIndex).compareTo(list.get(maxIndex)) < 0) {
    			E temp = list.get(maxIndex);
    			list.set(maxIndex, list.get(currentIndex));
    			list.set(currentIndex, temp);
    		} else {
    			break;
    		}
    		
       }
       return removedObject;
    }
    public int getSize() {
    	return list.size();
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值