数据结构 - 布隆过滤器(Bloom Filter)

思考

  • 如果要经常判断1个元素是否存在,你会怎么做?
    很容易想到使用哈希表(HashSet、HashMap),将元素作为key去查找
    时间复杂度:O(1),但是空间利用率不高,需要占用比较多的内存资源
  • 如果需要编写一个网络爬虫去爬10亿个网站数据,为了避免爬到重复的网站,如何判断某个网站是否爬过?
    很显然,HashSet、HashMap并不是非常好的选择
  • 是否存在时间复杂度低、占用内存较少的方案?
  • 布隆过滤器(Boolm Filter)
  • 1970年由布隆提出
    它是一个空间效率高的概率型数据结构,可以用来告诉你:一个元素一定不存在或者可能存在
  • 优缺点
    优点:空间效率和查询时间都远远超过一般的算法
    缺点:有一定的误判率、删除困难
    它实质上是一个很长的二进制向量和一系列随机映射函数(Hash函数)
  • 常见应用
  • 网页黑名单系统、垃圾邮件过滤系统、爬虫的网站判重系统、解决缓存穿透问题

原理

  • 假设布隆过滤器由20位二进制、3个哈希函数组成,每个元素经过哈希函数处理都能生成一个索引位置
  • 添加元素:将每一个哈希函数生成的索引位置都设为1
  • 查询元素是否存在
    如果一个哈希函数生成的索引位置不为1,就代表不存在(100%准确)
    如果一个哈希函数生成的索引位置都为1,就代表存在(存在一定的误判率)
    在这里插入图片描述
  • 添加、查询的时间复杂度都是:O(k),k是哈希函数的个数。
  • 空间复杂度是:O(m),m是二进制位的个数

误判率

  • 误判率p受3个因素影响:二进制位的个数m、哈希函数的个数k、数据规模n
    在这里插入图片描述
  • 已知误判率p、数据规模n,求二进制位的个数m、哈希函数的个数
    在这里插入图片描述)

实现

public class BoloomFilter<T> {
   
    // 二进制向量的长度(一共有多少个二进制位)
    private int bitSize;
    // 二进制向量
    private long[] bits;
    // 哈希函数的个数
    private int hashSize;
    / **
      * @param n 数据规模
      * @param p 误判率,取值范围(0, 1)
      * /
    public BloomFilter(int n, double p) {
   
        if (n <= 0 || p <= 0 || p >= 1) {
   
            throw new IllegalArgumentException("wrong n or p")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值