主要内容
1. | 命题与真值(或真假值)。 |
2. | 简单命题与复合命题。 |
3. | 联结词:否定联结词┐,合取联结词∧,析取联结词∨,蕴涵联结词→,等价联结词 |
4. | 命题公式(简称公式)。 |
5. | 命题公式的层次和公式的赋值。 |
6. | 真值表。 |
7. | 公式的类型(重言式(或永真式),矛盾式(或永假式),可满足式)。 |
学习要求
1. | 在5种联结词中,要特别注意蕴涵联结的应用,要弄清三个问题: |
① p→q的逻辑关系 ② p→q的真值 ③ p→q的灵活的叙述方法 |
|
2. | 写真值表要特别仔细认真,否则会出错误。 |
3. | 深刻理解各联结词的逻辑含义。 |
4. | 熟练地将复合命题符号化。 |
6. | 会用真值表求公式的成真赋值和成假赋值。 |
===========================================
命题与联结词
命题的概念
作为命题的陈述句所表达的判断结果称为命题的真值,真值只取两个值:真或假。真值为真的命题称为真命题,真值为假的命题称为假命题。真命题表达的判断正确,假命题表达的判断错误。任何命题的真值都是唯一的。判断给定句子是否为命题,应该分两步:
- 首先判定它是否为陈述句,
- 其次判断它是否有唯一的真值。
例1.1 判断下列句子是否为命题。
- (1) 4是素数。
- (2)
是无理数。
- (3) x大于y。
- (4) 月球上有冰。
- (5) 2100年元旦是晴天。
- (6) π大于
吗?
- (7) 请不要吸烟!
- (8) 这朵花真美丽啊!
- (9) 我正在说假话。
解: 本题的(9)个句子中,(6)是疑问句,(7)是祈使句,(8)是感叹句,因而这3个句子都不是命题。剩下的6个句子都是陈述句,但(3)无确定的真值,根据x,y的不同取值情况它可真可假,即无唯一的真值,因而不是命题。若(9)的真值为真,即“我正在说假话”为真,也就是“我正在说真话”,则又推出(9)的真值应为假;反之,若(9)的真值为假,即“我正在说假话”为假,也就是“我正在说假话”,则又推出(9)的真值应为真。于是(9)既不为真又不为假,因此它不是命题。像(9)这样由真推出假,又由假推出真的陈述句称为悖论。凡是悖论都不是命题。本例中,只有(1),(2),(4),(5)是命题。(1)为假命题,(2)为真命题。虽然今天我们不知道(4),(5)的真值,但它们的真值客观存在,而且是唯一的,将来总会知道(4)的真值,到2100年元旦(5)的真值就真相大白了。
复合命题与联结词
各种论述和推理中,出现的命题多数比例1.1中的命题更加复杂。
例1.2 是有理数是不对的; 2是偶素数; 2或4是素数; 如果2是素数,则3也是素数; 2是素数当且仅当3也是素数。 全是命题。
上述命题都是通过诸如“或”,“如果……,则……”等连词联结而成,这样命题,称为复合命题。相对地,构成复合命题的命题称为简单命题。
数理逻辑中,通常通过下列“联结词”来构成复合命题。